사장교 구조물을 대상으로 확률유한요소법을 신뢰성이론에 적합하도록 정식화하여 신뢰성해석을 보다 효율적으로 수행하고자 한다. 사장교의 초기평형해석을 수행한 후, 섭동법을 이용하여 선형 비선형 확률유한요소해석을 수행할 수 있으며, 확률변수의 상관성에 따른 신뢰성해석을 수행할 수 있는 프로그램을 작성하였다. 작성된 프로그램을 이용하여 사장교의 응답해석을 검토한 결과, 확률변수의 상호간 상관성에 따른 절점변위, 부재력 및 케이블긴장력에 대한 분산특성을 정량적으로 평가할 수 있었다. 또한 신뢰성지수 및 파괴확률을 검토하여 사장교 구조물의 안전성을 명확하게 파악하였다.
이 연구의 목적은 random forest 를 활용하여 기상요소만을 이용하여 우리나라 전체의 벼 평균수량을 예측하는데 있다. Random forest 는 예측에 사용되는 각 predictor variable 을 분리할 수 있는데 이를 통해 분리된 시계열 상의 추세가 비정상적인 증가형태를 보였다. 이는 결국 예측능력의 저하로 이어지기 때문에 이를 제거할 필요가 있고 본 연구에서는 이동 평균을 이용하여 제거한 후 예측을 하였다. 1991 년부터 2005 년까지의 기상자료와 수량자료를 학습에 사용하였고 2006 년부터 2015 년까지의 자료들을 검증용으로 사용하였다. 학습자료에 대해서는 상당히 정확한 예측 능력을 보여주었으나 검증 자료에서는 그렇지 못하였다. 그 이유를 분석하기 위해 학습 자료와 검증자료에 대해서 각각 변수 중요도를 산출하여 비교한 결과 두 자료 간에 월별 기상 자료에 대한 중요도가 변동되었음을 발견하였다. 이러하 차이가 발생한 이유는 학습자료와 검증 자료에서의 전국적으로 표준이앙기가 이동하여 벼의 생육기간 자체가 변하였기 때문이다. 따라서, 정확한 예측을 위해서는 지역별 파종기 또는 이앙기에 대한 자료가 필요하며 단순히 기상 자료만을 활용한 예측은 어려운 것으로 생긱된다.
Let {${\Omega}$, F, P} be a probability space and {$X_n{\mid}n{\geq}1$} be a sequence of random variables defined on it. We study the Hajeck-Renyi-type inequality for p..mixing random variable sequences and obtain the strong law of large numbers by using this inequality. We also consider the strong law of large numbers for weighted sums of ${\tilde{\rho}}$-mixing sequences.
Communications for Statistical Applications and Methods
/
제26권4호
/
pp.371-383
/
2019
Panel data sets have been developed in various areas, and many recent studies have analyzed panel, or longitudinal data sets. Maximum likelihood (ML) may be the most common statistical method for analyzing panel data models; however, the inference based on the ML estimate will have an inflated Type I error because the ML method tends to give a downwardly biased estimate of variance components when the sample size is small. The under estimation could be severe when data is incomplete. This paper proposes the restricted maximum likelihood (REML) method for a random effects panel data model with a censored dependent variable. Note that the likelihood function of the model is complex in that it includes a multidimensional integral. Many authors proposed to use integral approximation methods for the computation of likelihood function; however, it is well known that integral approximation methods are inadequate for high dimensional integrals in practice. This paper introduces to use the moments of truncated multivariate normal random vector for the calculation of multidimensional integral. In addition, a proper asymptotic standard error of REML estimate is given.
일반적으로 웨이블릿 계수는 적은 수의 크기가 큰 계수와 많은 수의 작은 크기의 계수로 구성되어 있다. 따라서 본 논문에서는 웨이블릿 계수의 성긴 특성에 근거한 베르누이-가우스 혼합 모델을 이용한 잡음 제거 방법을 제안한다. 베르누이-가우스 혼합 모델은 베르누이 랜덤 변수와 가우스 혼합 랜덤 변수의 곱으로 구성되며, 이에 대한 베이지안 추정법으로 잡음 제거를 수행한다. 본 논문에서는 국부 자승 오차의 기대값를 이용하여 통한 베르누이 랜덤 변수에 대한 간략화된 파라메터의 추정을 통하여 효율적인 잡음 제거 방법을 제시한다. 모의실험 결과를 통하여 본 논문의 방법이 직교 웨이블릿 변환을 사용한 최신의 잡음 제거 방법보다 우수한 성능을 나타낸다는 것을 보여준다.
The effect of the variable packet size on the LRD characteristic of the MMPP traffic model is investigated. When we generate packet traffic for the performance evaluation of IP packet network, MMPP model can be used to generate packet interarrival time. And a random length of packet size from a certain distribution can be assigned to each packet. However, there is a possibility that the variable packet size might change the LRD characteristic of the original MMPP model. In this study, we investigate this possibility. For this purpose the 'refined traffic' is defined, where packet arrival time is generated according to the MMPP model and a random packet length from a specific distribution is assigned to each generated packet. Hurst parameter of the refined traffic is estimated and compared with the original Hurst parameter, which is the input parameter of the MMPP model. We also investigate the effect of the packet size distribution on the queueing performance of the MMPP traffic model and the relationship between the Hurst parameter and queueing performance.
Communications for Statistical Applications and Methods
/
제1권1호
/
pp.33-40
/
1994
The conditional expectation of a random variable in a multivariate normal random vector is a multiple linear regression on its predecessors. Using this fact, the least median of squares estimation method developed in a multiple linear regression is adapted to a multivariate data to identify influential observations. The resulting method clearly detect outliers and it avoids the masking effect.
본 연구에서는, 서로 독립인 확률변수들의 합 $S_n$이 수렴하는 경우에, 확률변수들의 Tail 합 $T_n=S-S_{n-1}=\sum_{i=n}^{\infty}X_i$의 극한 성질을 연구함으로써, $S_n$이 하나의 확률변수 S로 수렴하는 속도를 연구한다. 좀 더 구체적으로 말하자면, 유사-단조감소(Quasi-monotone decreasing)하는 상수(Norming constants)의 수열에 대하여, 확률변수들의 Tail 합에 대한 약대수법칙과 하나의 수렴법칙이 동등함을 정리로 기술하고 증명하여, 기존의 연구 결과를 더 넓은 부류의 상수들의 경우에 적용할 수 있도록 확장한다.
We consider the following semi-parametric non-linear mixed effect regression model : y\ulcorner=f($\chi$\ulcorner;$\beta$)+$\sigma$$\mu$($\chi$\ulcorner)+$\sigma$$\varepsilon$\ulcorner,i=1,…,n,y*=f($\chi$;$\beta$)+$\sigma$$\mu$($\chi$) where y'=(y\ulcorner,…,y\ulcorner) is a vector of n observations, y* is an unobserved new random variable of interest, f($\chi$;$\beta$) represents fixed effect of known functional form containing unknown parameter vector $\beta$\ulcorner=($\beta$$_1$,…,$\beta$\ulcorner), $\mu$($\chi$) is a random function of mean zero and the known covariance function r(.,.), $\varepsilon$'=($\varepsilon$$_1$,…,$\varepsilon$\ulcorner) is the set of uncorrelated measurement errors with zero mean and unit variance and $\sigma$ is an unknown dispersion(scale) parameter. On the basis of finite-sample, small-dispersion asymptotic framework, we derive an absolute lower bound for the asymptotic mean squared errors of prediction(AMSEP) of the regular-consistent non-linear predictors of the new random variable of interest y*. Then we construct an optimal predictor of y* which attains the lower bound irrespective of types of distributions of random effect $\mu$(.) and measurement errors $\varepsilon$.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.