• Title/Summary/Keyword: Random Vibration fatigue

Search Result 41, Processing Time 0.024 seconds

The Relationship Study between Cumulative Fatigue and Stress of Seafarers by Evaluating Autonomic Nervous Functions and Survey Studies (선원의 자율신경 기능평가에 의한 누적피로도 및 스트레스와 조사연구 사이의 관련성 연구)

  • Kim, Byeongjo;Lee, Junghun;Lee, Sookyoung;Kwon, Haeyeon;Kwon, Youngtae;Park, Yongsun;Chae, Byeonggeun
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.6 no.4
    • /
    • pp.1-13
    • /
    • 2018
  • Purpose : The purpose of this study has been performed to find the relationship between seafarers' cumulative fatigue and stress by evaluating autonomic nervous functions and the results of surveys conducted using questionnaires. Methods : The subjects were seafarers working on various ships (home trade ships) of South Korea, who were healthy adults without any diseases, as confirmed through preliminary surveys were recruited through simple random sampling. A device that measures autonomic nervous functions by analyzing heart rate variability, which is also used often in clinical diagnoses and studies at universities, university hospitals, and general hospitals was used to measure the seafarers' cumulative fatigue and stress. Pearson's correlation analyses were also conducted to test the relationship between cumulative fatigue and stress measured by evaluating autonomic nervous functions and the results of surveys conducted with questionnaires. Results : There was no correlation between mean cumulative fatigue measured for each ship type and seafarers position through autonomic nervous functions evaluation and fatigue severity scale (FSS). There also was no correlation between the mean levels of stress measured for each ship type and seafarers position through autonomic nervous functions evaluation and survey scores of Korean occupational stress scale (KOSS). Conclusion : Therefore, in order to prevent man-made accidents in the sea among seafarers working with irregular port entry/departure schedules and under environments involving continued vibration, noises, and shaking, it is necessary to analyzed cumulative fatigue and stress scientifically and objectively, such as through autonomic nervous functions evaluation rather than through surveys.

Active Control of Fixed Offshore Structures (고정식 해양구조물의 능동제어)

  • 방제묵;김상범;윤정방
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.113-119
    • /
    • 1994
  • Vibration control of offshore structures subjected to wave loads is studied. The reduction of the dynamic responses of offshore towers subjected to wind generated random ocean waves is an important issue in the aspect of serviceability, fatigue life and safety of the structure. In this thesis, the effectiveness of the active tuned mass damper(ATMD) compared with the tuned mass damper(TMD) is mainly considered. Instantaneous optimal control scheme is employed for the active vibration control and Kalman filtering technique is used for the estimation of unmeasured response of structures. In practice, displacements and velocities could not be measured as easily as accelerations. So the state estimation methods like Kalman filter is very important. Numerical simulation is conducted for guarantee the effectiveness of ATMD for offshore structures.

  • PDF

Damage Value Calculation of Fuel Tank Considering Modal Characteristics (모달특성을 고려한 Fuel Tank의 손상도 계산)

  • Han, Woo-Sub;Park, Kwang-Seo;Kim, Young-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.534-538
    • /
    • 2008
  • The vehicle system is exposed to random source in service. Therefore, it is important to consider dynamic effect of the system. But, fatigue analysis is traditionally performed by using time signal of loading. To obtain dynamic effect of resonance, we carried out resonance durability analysis with frequency response and the dynamic load on frequency domain. The study shows that the damage considering resonant frequency of fuel tank system can be effectively estimated.

  • PDF

Development of Environmental Test Specifications for Aircraft Using Measured Vibration Data (항공기 실측 진동 데이터를 이용한 환경시험 규격 생성 연구)

  • Kim, Choonghyun;Song, Keehyeok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.302-308
    • /
    • 2021
  • Developers generally use test standards suggested by military standards such as MIL-STD-810G when performing vibration tests in the materiel development. However, according to MIL-STD-810G, it is recommended to test by tailoring the test standard suitable for the developed materiel, and it is specified to apply the suggested test standard only when there is difficulty in tailoring. In addition, the test standards presented by MIL-STD-810G are standards created under operating conditions different from the actual operating environment of each developed materiel, so the test according to this standard may be excessive or understated. Therefore, the developer must create an appropriate vibration test standard for the developed materiel as similar to the operating conditions as possible. In this paper, the procedure for creating the functional test standard and durability test standard suitable for the operating environment of the equipment to be mounted on the propeller aircraft under development is described, and the created standard is introduced.

A Study of Vibration Analysis of 100 MPa Class Fitting Thread for Mobile Hydrogen Charging Station (이동식 수소 충전 장비용 100 MPa급 고압 피팅의 진동 해석)

  • JUNYEONG KWON;SEUNGJUN OH;JUNGHWAN YOON;JEONGJU CHOI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.1
    • /
    • pp.83-89
    • /
    • 2024
  • In order to confirm the safety against vibration of high-pressure fittings for mobile hydrogen charging devices, the natural frequency was confirmed through ANSYS, and vibration data occurring during driving was applied to utilize the vehicle's operating power spectral density data specified in MIL-STD-810H regulations. Fatigue analysis and resonance were confirmed, and as a result, it was confirmed that the sum of the pure phase ratios was less than 1 for the driving history presented in the standard, and there was no risk of resonance.

Active Control of Offshore Structures for Wave Response Reduction Using Probabilistic Neural Network

  • Kim, Doo-Kie;Kim, Dong-Hyawn;Chang, Sang-Kil;Chang, Seong-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.1-8
    • /
    • 2006
  • Offshore structures are subjected to wave, wind, and earthquake loads. The failure of offshore structures can cause sea pollution, as well as losses of property and lives. Therefore, safety of the structure is an important issue. The reduction of the dynamic response of offshore towers, subjected wind generated random ocean waves, is a critical problem with respect to serviceability, fatigue life and safety of the structure. In this paper, a structural control method is proposed to control the vibration of offshore structures by the probabilistic neural network (PNN). The state vectors of the structure and control forces are used for training patterns of the PNN, in which control forces are prepared by linear quadratic regulator (LQR) control algorithm. The proposed algorithm is applied to a fixed offshore structure under random ocean waves. Active control of the fixed offshore structure using the PNN control algorithm shows good results.

Experimental Validation of High Damping Printed Circuit Board With a Multi-layered Superelastic Shape Memory Alloy Stiffener (적층형 초탄성 형상기억합금 보강재 기반 고댐핑 전자기판의 실험적 성능 검증)

  • Shin, Seok-Jin;Park, Sung-Woo;Kang, Soo-Jin;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.661-669
    • /
    • 2021
  • A mechanical stiffener has been mainly applied on a PCB to secure fatigue life of a solder joint of an electronic components in spaceborne electronics by minimizing bending displacement of the PCB. However, it causes an increase of mass and volume of the electronics. The high damping PCB implemented by multi-layered viscoelastic tapes of a previous research was effective for assuring the fatigue life of the solder joint, but it also has a limitation to decrease accommodation efficiency for the components on the PCB. In this study, we proposed high damping PCB with a multi-layered superelastic shape memory alloy stiffener for spatialminimized, light-weighted, high-integrated structure design of the electronics. To investigate the basic characteristics of the proposed PCB, a static load test, a free vibration test were performed. Then, the high damping characteristic and the design effectiveness of the PCB were validated through a random vibration test.

Vibration Reduction Technique for Rotating Suspension Vehicles with a Modified Skyhook Controller (수정된 스카이훅 제어기를 적용한 회전형 현가장치 차량의 차체진동 저감)

  • Jung, Samuel;Yoo, Wan-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.25-30
    • /
    • 2013
  • In military vehicles moving over poor roads, severe vibration of the chassis can damage internal components. Currently, many studies have focused on active and semi-active suspensions to reduce the vibration of the chassis. In this study, a vibration reduction technique is suggested by applying a unique rotating suspension structure. SH-ADD, a type of modified Skyhook, was selected as a controller for vibration reduction. A random ISO class E road was selected as the driving road. The simulation was performed using ADAMS Control and Matlab Simulink. The control result was compared with the RMS acceleration with a focus on the cumulative fatigue of the internal equipment.

The Study of Dynamic Safety Using M&S for Integrated Electro-mechanical Actuator Installed on Aircraft (M&S를 이용한 항공기용 통합형 전기식 구동장치의 동적 안전성 연구)

  • Lee, Sock-Kyu;Lee, Byoung-Ho;Lee, Jeung;Kang, Dong-Seok;Choi, Kwan-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.2
    • /
    • pp.108-115
    • /
    • 2015
  • Electro-mechanical actuator installed on aircraft consists of a decelerator which magnifies the torque in order to rotate an axis connected with aircraft control surface, a control section which controls the motor assembly through receiving orders from cockpit and a motor assembly which rotates the decelerator. Electro-mechanical actuator controls aircraft altitude, position, landing, takeoff, etc. It is an important part of a aircraft. Aircraft maneuvering causes vibrations to electro-mechanical actuator. Vibrations may result in structural fatigue. For that reason, it is necessary to analyze the system structural safety. In order to analyze the system structural safety. It is needed reasonable finite element model and structural response stress closed to real value. In this paper, analytic model is derived by using the simplified finite element model, and damping ratio which is closely related to response stress is derived by using modal test. So, we developed analytic model in less than 10 % error rate, compared with modal test. Vibration response stress close to real value was estimated from analytic model modified with modal experimental damping ratio. Estimation method for damping ratio with empirical formula was suggested partly. Finally, It was proved that electro-mechanical actuator had reasonable structure margin of safety at environmental random $3{\sigma}$ stress during life cycle.

Estimating Fatigue Life of APD Electronic Equipment for Activation of a Spaceborne X-band 2-axis Antenna (2축 짐벌식 X-band 안테나 구동용 전장품 APD 제어보드의 피로수명 평가)

  • Jeon, Young-Hyeon;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • While a satellite is carried into orbit by a launch vehicle, it is exposed to the severe launch environment with random vibrations and shock. Accordingly, these vibration sources affect electronic equipment, particularly the printed circuit board (PCB) in the satellite. When the launch load impacts the PCB, it causes negative behavior. This causes perpendicular bending around the boundary of fixation points that finally leads to the failure of solder joints, lead wires, and PCB cracks. To overcome these issues, the electronic equipment design must meet reliability requirements. In this paper, Steinberg's method is used to derive allowable and maximum deflection to verify design from a life perspective concerning the control board of the Antenna Pointing Driver (APD) mounted on KOMPSAT-3.