DOI QR코드

DOI QR Code

Experimental Validation of High Damping Printed Circuit Board With a Multi-layered Superelastic Shape Memory Alloy Stiffener

적층형 초탄성 형상기억합금 보강재 기반 고댐핑 전자기판의 실험적 성능 검증

  • Received : 2021.01.31
  • Accepted : 2021.06.17
  • Published : 2021.08.01

Abstract

A mechanical stiffener has been mainly applied on a PCB to secure fatigue life of a solder joint of an electronic components in spaceborne electronics by minimizing bending displacement of the PCB. However, it causes an increase of mass and volume of the electronics. The high damping PCB implemented by multi-layered viscoelastic tapes of a previous research was effective for assuring the fatigue life of the solder joint, but it also has a limitation to decrease accommodation efficiency for the components on the PCB. In this study, we proposed high damping PCB with a multi-layered superelastic shape memory alloy stiffener for spatialminimized, light-weighted, high-integrated structure design of the electronics. To investigate the basic characteristics of the proposed PCB, a static load test, a free vibration test were performed. Then, the high damping characteristic and the design effectiveness of the PCB were validated through a random vibration test.

종래 우주용 전장품 개발과정에서는 발사진동환경에 대한 탑재 전자소자 솔더 접합부의 피로수명 보장을 위해 기판 상에 보강재를 적용하여 강성을 증가시킴으로써 기판의 동적거동을 최소화하였다. 그러나 종래의 설계는 전장품의 부피 및 무게의 증가를 야기하여 소형/경량화 설계에 한계를 갖는다. 선행 연구에서 제안된 점탄성 테이프 기반 고댐핑 적층형 전자기판은 굽힘변위 저감을 통한 소자의 피로수명 연장에 효과적임을 입증하였으나 고댐핑 부여를 위한 적층구조가 기판에 직접 장착되는 관계로 소자 실장 공간의 효율이 저하되는 한계를 지닌다. 본 연구에서는 전장품 소형/경량/고집적화 설계 구현을 위해 일반 금속 대비 높은 댐핑과 복원 특성을 갖는 초탄성 형상기억합금에 점탄성 테이프를 적용한 적층구조의 초탄성 형상기억합금 보강재 기반 고댐핑 전자기판을 제안하였다. 제안 기판의 기본특성 파악을 위해 정하중시험 및 자유진동시험을 수행하였으며, 랜덤진동시험을 통해 진동환경 하 고댐핑 특성 및 설계 유효성을 입증하였다.

Keywords

Acknowledgement

본 과제(결과물)는 교육부와 한국연구재단의 재원으로 지원을 받아 수행된 사회맞춤형 산학협력 선도대학(LINC+) 육성사업의 연구결과입니다.

References

  1. Kim, K. S., Bae, K. M., Oh, S. Y., Seo, M. K., Kang, C. G. and Park, S. J., "Trend of carbon fiber-reinforced composites for lightweight vehicles," Elastomers and composites, Vol. 47, Iss. 1, 2012, pp. 65~74. https://doi.org/10.7473/EC.2012.47.1.065
  2. Filippazzo, G. and Dinand, S., "The potential impact of small satellite radar constellations on traditional space systems," Proceedings of 5th Federated and Fractionated Satellite Systems Workshop, Vol. 5, 2017, pp. 1~12.
  3. Park, T. Y. and Oh, H. U., "New PCB strain-based structural design methodology for reliable and rapid evaluation of spaceborne electronics under random vibration," International Journal of Fatigue, Vol. 146, 2021, pp. 1~11.
  4. Steinberg, D. S., "Vibration analysis for electronic equipment," 3rd ed. New York: John Wiley and Sons Inc; 2000.
  5. Herreros, J. M., et al., "The planck-LFI radiometer electronics box assembly," Journal of Instrumentation, Vol. 4, 2009, pp. 1~30.
  6. Park, T. Y., Shin, S. J., Park, S. W., Kang, S. J. and Oh, H. U., "High-damping PCB implemented by multi-layered viscoelastic acrylic tapes for use of wedge lock applications," Engineering Fracture Mechanics, Vol. 241, 2021, pp. 1~13.
  7. Kwon, S. C. and Oh, H. U., "Passive Micro-jitter Isolation of Gimbal-type Antenna by Using a Superelastic SMA Gear Wheel," Mechanical Systems & Signal Processing, Vol. 114, 2019, pp. 35~53. https://doi.org/10.1016/j.ymssp.2018.05.001
  8. Hyun, B. S., Kim, H. K., Lee, J. J. and Choi, J. M., "Thermal analysis on ground preparation and launch stage for low earth orbit satellite," Proceedings of the Korean Society for Aeronautical and Space Sciences Fall Conference, November 2004, pp. 267~270.
  9. http://esmat.esa.int/a11_6.htm
  10. European Cooperation for Space Standardization (ECSS-E-HB-32-21A), 2011.
  11. Yan, X. J. and Nie, J. X., "Study of a new application form of shape memory alloy superelasticity," Smart Materials and Structures, Vol. 12, No. 6, November 2003, pp. 14~23.
  12. Shin, S. J., Park, S. W., Kang, S. J. and Oh, H. U., "Characteristic verification of high damping printed circuit board under vibration," Proceedings of the Korean Society for Aeronautical and Space Sciences Fall Conference, November 2020, pp. 173~174.
  13. European Cooperation for Space Standardization: (ECSS-E-HB-32-21A), 2011.
  14. Jiao, H. H., Liu, Y., Su, F., Wu, N. and Fang, H., "Solder interconnects reliability subjected to thermal-vibration coupling loading," Journal of Materials Science: Materials in Electronics, Vol. 30, 2019, pp. 11482~11492. https://doi.org/10.1007/s10854-019-01501-y
  15. Irvine, T., "Shock and Vibration Response Spectra Course: Unit 15," Indi-rect Saturation Removal, pp. 1~6.