• 제목/요약/키워드: Random Tree Particle

검색결과 5건 처리시간 0.015초

An Optimized Random Tree and Particle Swarm Algorithm For Distribution Environments

  • Feng, Zhou;Lee, Un-Kon
    • 유통과학연구
    • /
    • 제13권6호
    • /
    • pp.11-15
    • /
    • 2015
  • Purpose - Robot path planning, a constrained optimization problem, has been an active research area with many methods developed to tackle it. This study proposes the use of a Rapidly-exploring Random Tree and Particle Swarm Optimizer algorithm for path planning. Research design, data, and methodology - The grid method is built to describe the working space of the mobile robot, then the Rapidly-exploring Random Tree algorithm is applied to obtain the global navigation path and the Particle Swarm Optimizer algorithm is adopted to obtain the best path. Results - Computer experiment results demonstrate that this novel algorithm can rapidly plan an optimal path in a cluttered environment. Successful obstacle avoidance is achieved, the model is robust, and performs reliably. The effectiveness and efficiency of the proposed algorithm is demonstrated through simulation studies. Conclusions - The findings could provide insights to the validity and practicability of the method. This method makes it is easy to build a model and meet real-time demand for mobile robot navigation with a simple algorithm, which results in a certain practical value for distribution environments.

Approach toward footstep planning considering the walking period: Optimization-based fast footstep planning for humanoid robots

  • Lee, Woong-Ki;Kim, In-Seok;Hong, Young-Dae
    • ETRI Journal
    • /
    • 제40권4호
    • /
    • pp.471-482
    • /
    • 2018
  • This paper proposes the necessity of a walking period in footstep planning and details situations in which it should be considered. An optimization-based fast footstep planner that takes the walking period into consideration is also presented. This footstep planner comprises three stages. A binary search is first used to determine the walking period. The front stride, side stride, and walking direction are then determined using the modified rapidly-exploring random tree algorithm. Finally, particle swarm optimization (PSO) is performed to ensure feasibility without departing significantly from the results determined in the two stages. The parameters determined in the previous two stages are optimized together through the PSO. Fast footstep planning is essential for coping with dynamic obstacle environments; however, optimization techniques may require a large computation time. The two stages play an important role in limiting the search space in the PSO. This framework enables fast footstep planning without compromising on the benefits of a continuous optimization approach.

Exploring the Feature Selection Method for Effective Opinion Mining: Emphasis on Particle Swarm Optimization Algorithms

  • Eo, Kyun Sun;Lee, Kun Chang
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권11호
    • /
    • pp.41-50
    • /
    • 2020
  • 감성분석 연구에서는 문장에 내포된 감성을 결정짓는 단어를 찾는 것으로부터 시작된다. 경영자는 소비자가 주로 사용하는 단어를 분석함으로써 시장의 반응을 이해할 수 있다. 본 연구에서는 감성분류의 성능에 영향을 미치는 단어를 찾기 위하여 입자군집최적화 탐색방법과 다목적진화 알고리즘이 적용된 속성선택 방법을 제안한다. 속성선택 방법은 기존 머신러닝 분류기를 벤치마킹함으로써 성능이 비교된다. 벤치마킹된 분류기는 의사결정나무, 나이브 베이지안 네트워크, 서포터 벡터 머신, 랜덤포레스트, 배깅, 랜덤 서브스페이스, 로테이션 포레스트이다. 연구결과에 따르면, 입자군집 최적화 알고리즘이 적용된 속성선택방법으로 선택된 속성을 사용한 경우에 속성의 수를 상당히 줄일 수 있었고, 분류기의 성능을 유지시킬 수 있었다. 특히, 정확도 결과에서는 입자군집 최적화 탐색방법으로 선택된 속성을 사용한 경우의 서포터 벡터 머신의 성능이 가장 높게 나타났다. AUC 결과에서는 랜덤 서브스페이스가 가장 높게 나타났다. 본 연구의 결과는 해당 탐색방법과 분류기를 적용함으로써 오피니언 마이닝 모델의 성능을 효율적으로 유지 및 개선시키도록 도움을 준다.

Damage identification in suspension bridges under earthquake excitation using practical advanced analysis and hybrid machine-learning models

  • Van-Thanh Pham;Duc-Kien Thai;Seung-Eock Kim
    • Steel and Composite Structures
    • /
    • 제52권6호
    • /
    • pp.695-711
    • /
    • 2024
  • Suspension bridges are critical to urban transportation, but those in earthquake-prone areas face unique challenges. In the event of a moderate or strong earthquake, conventional linear theory-based approaches for detecting bridge damage become inadequate. This study presents an efficient method for identifying damage in suspension bridges using time history nonlinear inelastic analysis. A practical advanced analysis program is employed to model cable-supported bridges with low computational cost, generating a dataset for four hybrid models: PSO-DT, PSO-RF, PSO-XGB, and PSO-CGB. These models combine decision tree (DT), random forest (RF), extreme gradient boosting (XGB), and categorical gradient boosting (CGB) with particle swarm optimization (PSO) to capture nonlinear correlations between displacement response and damage. Principal component analysis reduces dataset dimensions, and PSO selects the optimal model. A numerical case study of a suspension bridge under simulated earthquake conditions identifies PSO-XGB as the best model for predicting stiffness reduction. The results demonstrate the method's robustness for nonlinear damage detection in suspension bridges under earthquake excitation.

S-MTS를 이용한 강판의 표면 결함 진단 (Steel Plate Faults Diagnosis with S-MTS)

  • 김준영;차재민;신중욱;염충섭
    • 지능정보연구
    • /
    • 제23권1호
    • /
    • pp.47-67
    • /
    • 2017
  • 강판 표면 결함은 강판의 품질과 가격을 결정하는 중요한 요인 중 하나로, 많은 철강 업체는 그동안 검사자의 육안으로 강판 표면 결함을 확인해왔다. 그러나 시각에 의존한 검사는 통상 30% 이상의 판단 오류가 발생함에 따라 검사 신뢰도가 낮은 문제점을 갖고 있다. 따라서 본 연구는 Simultaneous MTS (S-MTS) 알고리즘을 적용하여 보다 지능적이고 높은 정확도를 갖는 새로운 강판 표면 결함 진단 시스템을 제안하였다. S-MTS 알고리즘은 단일 클래스 분류에는 효과적이지만 다중 클래스 분류에서 정확도가 떨어지는 기존 마할라노비스 다구찌시스템 알고리즘(Mahalanobis Taguchi System; MTS)의 문제점을 해결한 새로운 알고리즘이다. 강판 표면 결함 진단은 대표적인 다중 클래스 분류 문제에 해당하므로, 강판 표면 결함 진단 시스템 구축을 위해 본 연구에서는 S-MTS 알고리즘을 채택하였다. 강판 표면 결함 진단 시스템 개발은 S-MTS 알고리즘에 따라 다음과 같이 진행하였다. 첫째, 각 강판 표면 결함 별로 개별적인 참조 그룹 마할라노비스 공간(Mahalanobis Space; MS)을 구축하였다. 둘째, 구축된 참조 그룹 MS를 기반으로 비교 그룹 마할라노비스 거리(Mahalanobis Distance; MD)를 계산한 후 최소 MD를 갖는 강판 표면 결함을 비교 그룹의 강판 표면 결함으로 판단하였다. 셋째, 강판 표면 결함을 분류하는 데 있어 결함 간의 차이점을 명확하게 해주는 예측 능력이 높은 변수를 파악하였다. 넷째, 예측 능력이 높은 변수만을 이용해 강판 표면 결함 분류를 재수행함으로써 최종적인 강판 표면 결함 진단 시스템을 구축한다. 이와 같은 과정을 통해 구축한 S-MTS 기반 강판 표면 결함 진단 시스템의 정확도는 90.79%로, 이는 기존 검사 방법에 비해 매우 높은 정확도를 갖는 유용한 방법임을 보여준다. 추후 연구에서는 본 연구를 통해 개발된 시스템을 현장 적용하여, 실제 효과성을 검증할 필요가 있다.