DOI QR코드

DOI QR Code

Approach toward footstep planning considering the walking period: Optimization-based fast footstep planning for humanoid robots

  • Lee, Woong-Ki (Department of Electrical and Computer Engineering, Ajou University) ;
  • Kim, In-Seok (Department of Electrical and Computer Engineering, Ajou University) ;
  • Hong, Young-Dae (Department of Electrical and Computer Engineering, Ajou University)
  • Received : 2018.01.29
  • Accepted : 2018.05.14
  • Published : 2018.08.07

Abstract

This paper proposes the necessity of a walking period in footstep planning and details situations in which it should be considered. An optimization-based fast footstep planner that takes the walking period into consideration is also presented. This footstep planner comprises three stages. A binary search is first used to determine the walking period. The front stride, side stride, and walking direction are then determined using the modified rapidly-exploring random tree algorithm. Finally, particle swarm optimization (PSO) is performed to ensure feasibility without departing significantly from the results determined in the two stages. The parameters determined in the previous two stages are optimized together through the PSO. Fast footstep planning is essential for coping with dynamic obstacle environments; however, optimization techniques may require a large computation time. The two stages play an important role in limiting the search space in the PSO. This framework enables fast footstep planning without compromising on the benefits of a continuous optimization approach.

Keywords

References

  1. J. J. Kuffner et al., Footstep planning among obstacles for biped robots, IEEE/RSJ Int. Conf. Intell. Robots Syst., Maui, HI, USA, Oct. 29-Nov. 3, 2001, pp. 500-505.
  2. J. Chestnutt et al., Planning biped navigation strategies in complex environments, IEEE/RAS Int. Conf. Human. Robots, Karlsruhe, Germany, Sept. 29-30, 2003, pp. 13-18.
  3. J. J. Kuffner et al., Motion planning for humanoid robots, The Eleventh International Symposium Robotics Research, Springer, Heidelberg, Berlin, 2005, pp. 365-374.
  4. J. Chestnutt et al., Footstep planning for the Honda ASIMO humanoid, IEEE Int. Conf. Robot. Autom., Barocelona, Spain, Apr. 18-22, 2005, pp. 631-636.
  5. J. Chestnutt et al., An adaptive action model for legged navigation planning, IEEE/RAS Int. Conf. Human. Robots, Pittsburgh, PA, USA, Nov. 29-Dec. 1, 2007, pp. 196-202.
  6. Z. Xia et al., Parameter optimization in non-uniform randomized footstep planning for biped navigation, IEEE Int. Conf. Mechatronics Autom., Changchun, China, Aug. 9-12, 2009, pp. 3745-3750.
  7. Z. Xia, J. Xiong, and K. Chen, Global navigation for humanoid robots using sampling-based footstep planners, IEEE/ASME Trans. Mechatronics 16 (2011), no. 4, 716-723. https://doi.org/10.1109/TMECH.2010.2051679
  8. N. Perrin et al., Fast humanoid robot collision-free footstep planning using swept volume approximations, IEEE Trans. Robot. 28 (2012), no. 2, 427-439. https://doi.org/10.1109/TRO.2011.2172152
  9. Y.-D. Hong et al., Evolutionary multiobjective footstep planning for humanoid robots, IEEE Trans. Syst., Man, Cybern. C, Appl. Rev. 41 (2011), no. 4, 520-532. https://doi.org/10.1109/TSMCC.2010.2063700
  10. Y.-D. Hong and J.-H. Kim, An evolutionary optimized footstep planner for the navigation of humanoid robots, Int. J. Humanoid Robot. 9 (2012), no. 1, 1250005:1-1250005:18.
  11. K.-B. Lee and J.-H. Kim, Multiobjective particle swarm optimization with preference-based sort and its application to path following footstep optimization for humanoid robots, IEEE Trans. Evol. Comput. 17 (2013), no. 3, 755-766. https://doi.org/10.1109/TEVC.2013.2240688
  12. R. Deits and R. Tedrake, Footstep planning on uneven terrain with mixed-integer convex optimization, IEEE/RAS Int. Conf. Human. Robot., Madrid, Spain, Nov. 18-20, 2014, pp. 279-286.
  13. K.-B. Lee, H. Myung, and J.-H. Kim, Online multiobjective evolutionary approach for navigation of humanoid robots, IEEE Trans. Ind. Electron. 62 (2015), no. 9, 5586-5597. https://doi.org/10.1109/TIE.2015.2405901
  14. B. Stephens and C. Atkeson, Push recovery by stepping for humanoid robots with force controlled joints, IEEE/RAS Int. Conf. Human. Robot., Nashville, TN, USA, Dec. 2010, pp. 52-59.
  15. M. Morisawa et al., A biped pattern generation allowing immediate modification of foot placement in real-time, IEEE /RAS Int. Conf. Human. Robot., Genova, Italy, Dec. 4-6, 2006, pp. 581-586.
  16. T. Takubo et al., Emergent walking stop using 3-D ZMP modification criteria map for humanoid robot, IEEE Int. Conf. Robot. Autom., Roma, Italy, Apr. 10-14, 2007, pp. 2676-2681.
  17. P. Kryczka et al., Online regeneration of bipedal walking gait pattern optimizing footstep placement and timing, IEEE/RSJ Int. Conf. Intell. Robots Syst., Hamburg, Germany, Sept. 28-Oct. 2, 2015, pp. 3352-3357.
  18. M. Khadiv et al., Step timing adjustment: a step toward generating robust gaits, IEEE Int. Conf. Human. Robots, Cancun, Mexico, Nov. 15-17, 2016, pp. 35-42.
  19. M. Brandao et al., Footstep planning for slippery and slanted terrain using human-inspired models, IEEE Trans. Robot. 32 (2016), no. 4, 868-879. https://doi.org/10.1109/TRO.2016.2581219
  20. B.-J. Lee et al., Modifiable walking pattern of a humanoid robot by using allowable ZMP variation, IEEE Trans. Robot. 24 (2008), no. 4, 917-925. https://doi.org/10.1109/TRO.2008.926859
  21. J. Kennedy and R. Eberhart, Particle swarm optimization, IEEE Int. Conf. Neural Netw., Perth, Australia, Nov. 27-Dec. 1, 1995, pp. 1942-1948.

Cited by

  1. Quadrotor path planning using A* search algorithm and minimum snap trajectory generation vol.43, pp.6, 2018, https://doi.org/10.4218/etrij.2020-0085