DOI QR코드

DOI QR Code

Incremental hierarchical roadmap construction for efficient path planning

  • Park, Byungjae (SW.Contents Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Choi, Jinwoo (Marine Robotics Laboratory, Korea Research Institute of Ships and Ocean Engineering) ;
  • Chung, Wan Kyun (Department of Mechanical Engineering, POSTECH)
  • Received : 2018.02.23
  • Accepted : 2018.05.14
  • Published : 2018.08.07

Abstract

This paper proposes a hierarchical roadmap (HRM) and its construction process to efficiently represent navigable areas in an indoor environment. HRM is adopted to solve the path-planning problems of mobile robots in indoor environments. HRM has a multi-layered graphical structure that enables it to abstract and cover navigable areas using a smaller number of nodes and edges than a probabilistic roadmap. During the incremental process of constructing HRM, information on navigable areas is abstracted using a sonar gridmap when the mobile robot navigates an unexplored area. The HRM-based planner efficiently searches for paths to answer queries by reducing the search space size using the multi-layered graphical structure. The benefits of the proposed HRM are experimentally verified in real indoor environments.

Keywords

References

  1. D. Dolgov et al., Path planning for autonomous vehicles in unknown semi-structured environments, Int. J. Robot. Res., 29 (2010), no. 9, 485-501. https://doi.org/10.1177/0278364909359210
  2. L. Kavraki et al., Probabilistic roadmaps for path-planning in high-dimensional configuration spaces, IEEE Trans. on Robot. and Autom., 12 (1996), no. 4, 566-580. https://doi.org/10.1109/70.508439
  3. J. van den Berg et al., Anytime path-planning and replanning in dynamic environments, IEEE Int. Conf. Robot. Autom., Orlando, FL, USA, May 15-19, 2006, pp. 2366-2371.
  4. A. Vazquez-Otero et al., Reaction diffusion Voronoi diagrams: From sensors data to computing, Sens., 15 (2015), no. 6, 12736-12764. https://doi.org/10.3390/s150612736
  5. B. Park et al., An efficient mobile robot path planning using hierarchical roadmap representation in indoor environment, IEEE Int. Conf. Robot. Autom., St. Paul, MN, USA, May 14-18, 2012, pp. 180-186.
  6. S. Thrun, Learning metric-topological maps for indoor mobile robot navigation, Artif. Intell., 99 (1998), no. 1, 21-77. https://doi.org/10.1016/S0004-3702(97)00078-7
  7. K. Lee et al., Topological navigation of mobile robot in corridor environment using sonar sensor, IEEE/RSJ Int. Conf. Intell. Robot. Syst., Beijing, China, October 9-15, 2006, pp. 2760-2765.
  8. L. Fermin-Leon et al., Incremental contour-based topological segmentation for robot exploration, IEEE Int. Conf. Robot. Autom., Singapore, May 29-June 3, 2017, pp. 2554-2561.
  9. H. Wu et al., Spatial semantic hybrid map building and application of mobile service robot, Robot. Auton. Syst., 62 (2014), no. 6, 923-941. https://doi.org/10.1016/j.robot.2013.01.001
  10. F. Blochliger et al., Topomap: Topological mapping and navigation based on visual SLAM maps, arXiv, 1709.05533, 2018.
  11. O. M. Mozos and W. Burgard, Supervised learning of topological maps using semantic information extracted from range data, IEEE Int. Conf. Robot. Autom., Beijing, China, October 9-15, 2006, pp. 2772-2777.
  12. L. Shi and S. Kodagoda, Towards generalization of semi-supervised place classification over generalized Voronoi graph, Robot. and Auton. Syst., 61 (2013), no. 8, 785-796. https://doi.org/10.1016/j.robot.2013.04.013
  13. J. van den Berg and M. Overmars, Using workspace information as a guide to non-uniform sampling in probabilistic roadmap planners, Int. J. Robot. Res., 24 (2005), no. 2, 1055-1071. https://doi.org/10.1177/0278364905060132
  14. B. Ichter et al., Learning sampling distributions for robot motion planning, arXiv, 1709.05448, 2018.
  15. M. Branicky, Quasi-randomized path-planning, IEEE Int. Conf. Robot. Autom., Seoul, Rep. of Korea, May 21-26, 2001, pp. 1481-1487.
  16. D. Xie et al., Incremental map generation, Algo. Found. Robot. VIII, 47 (2008), 53-68.
  17. S. Rodriguez et al., RESAMPL: A region-sensitive adaptive motion planner, Algo. Found. of Robot. VIII, 47 (2008), 285-300.
  18. R. Geraerts and M. Overmars, Creating high-quality roadmaps for motion planning in virtual environments, IEEE/RSJ Int. Conf. Intell. Robot. Syst., Beijing, China, October 9-15, 2006, pp. 4355-4361.
  19. H. Lee and B. Lee. Path planning based on probabilistic roadmap for initial deployment of Marsupial robot team, J. Control Rob. Syst., 24 (2018), no. 1, 80-89.
  20. J. Choi et al., Autonomous topological modeling of a home environment and topological localization using a sonar gridmap, Auton. Robot., 30 (2011), no. 4, 351-368. https://doi.org/10.1007/s10514-011-9223-6
  21. L. Kleeman and R. Kuc, Sonar sensing, Handbook on Robot., Springer-Verlag, 2008.
  22. N. Katevas et al., The approximate cell decomposition with local node refinement global path-planning method: Path nodes refinement and curve parametric interpolation, J. of Intell. Robot. Syst., 22 (1998), no. 3-4, 289-314. https://doi.org/10.1023/A:1008034314006
  23. J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Trans. Pattern Anal. Machine Intell., 22 (2000), no. 8, 888-905. https://doi.org/10.1109/34.868688
  24. Q. Du et al., Centroidal Voronoi Tessellations: Applications and algorithms, SIAM Review, 41 (1999), no. 4, 637-676. https://doi.org/10.1137/S0036144599352836
  25. B. Park and W. K. Chung, Conf. Intell. Robot. Syst., St. Louis, MO, USA, October 11-15, 2009, pp. 4399-4405.
  26. T. T. Wong et. al., Sampling with Hammersley and Halton points, J. Graph. Tool., 2 (1997), no. 2, 9-24. https://doi.org/10.1080/10867651.1997.10487471
  27. B. Park and W. K. Chung, Efficient environment representation for mobile robot path-planning using CVT-PRM with Halton sampling, Electron. Lett., 48 (2012), no. 22, 1397-1399. https://doi.org/10.1049/el.2012.2894
  28. B. Frey and D. Dueck, Clustering by passing messages between data points, Science, 315 (2007), no. 5184, 972-976. https://doi.org/10.1126/science.1136800
  29. E. Magid et al., Spline-based robot navigation, IEEE/RSJ Int. Conf. Intell. Robot. Syst., Beijing, China, October 9-15, 2006, pp. 2296-2301.
  30. R. Geraerts and M. Overmars, Creating high-quality paths for motion planning, Int. J. Robot. Res., 26 (2007), no. 8, 845-863. https://doi.org/10.1177/0278364907079280
  31. K. Yang and S. Sukkarieh, An analytical continuous-curvature path-smoothing algorithm, IEEE Trans. Robot., 26 (2010), no. 3, 561-568. https://doi.org/10.1109/TRO.2010.2042990
  32. K. Lee and W. K. Chung, Effective maximum likelihood grid map with conflict evaluation filter using sonar sensors, IEEE Trans. Robot., 25 (2009), no. 4, 887-901. https://doi.org/10.1109/TRO.2009.2024783
  33. T. Simeon et al., Visibility-based probabilistic roadmaps for motion planning, Adv. Robot., 14 (2012), no. 6, 477-493.
  34. H. Nguyen et al., Constrained CVT meshes and a comparison of triangular mesh generators, Comp. Geom., 42 (2009), no. 1, 1-19. https://doi.org/10.1016/j.comgeo.2008.04.002

Cited by

  1. Hierarchical Path-Planning for Mobile Robots Using a Skeletonization-Informed Rapidly Exploring Random Tree* vol.10, pp.21, 2018, https://doi.org/10.3390/app10217846
  2. Path Planning for Autonomous Mobile Robots: A Review vol.21, pp.23, 2021, https://doi.org/10.3390/s21237898
  3. Quadrotor path planning using A* search algorithm and minimum snap trajectory generation vol.43, pp.6, 2018, https://doi.org/10.4218/etrij.2020-0085