• Title/Summary/Keyword: Random Forest Algorithm

Search Result 229, Processing Time 0.021 seconds

The Prediction of Survival of Breast Cancer Patients Based on Machine Learning Using Health Insurance Claim Data (건강보험 청구 데이터를 활용한 머신러닝 기반유방암 환자의 생존 여부 예측)

  • Doeggyu Lee;Kyungkeun Byun;Hyungdong Lee;Sunhee Shin
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.2
    • /
    • pp.1-9
    • /
    • 2023
  • Research using AI and big data is also being actively conducted in the health and medical fields such as disease diagnosis and treatment. Most of the existing research data used cohort data from research institutes or some patient data. In this paper, the difference in the prediction rate of survival and the factors affecting survival between breast cancer patients in their 40~50s and other age groups was revealed using health insurance review claim data held by the HIRA. As a result, the accuracy of predicting patients' survival was 0.93 on average in their 40~50s, higher than 0.86 in their 60~80s. In terms of that factor, the number of treatments was high for those in their 40~50s, and age was high for those in their 60~80s. Performance comparison with previous studies, the average precision was 0.90, which was higher than 0.81 of the existing paper. As a result of performance comparison by applied algorithm, the overall average precision of Decision Tree, Random Forest, and Gradient Boosting was 0.90, and the recall was 1.0, and the precision of multi-layer perceptrons was 0.89, and the recall was 1.0. I hope that more research will be conducted using machine learning automation(Auto ML) tools for non-professionals to enhance the use of the value for health insurance review claim data held by the HIRA.

Mapping Mammalian Species Richness Using a Machine Learning Algorithm (머신러닝 알고리즘을 이용한 포유류 종 풍부도 매핑 구축 연구)

  • Zhiying Jin;Dongkun Lee;Eunsub Kim;Jiyoung Choi;Yoonho Jeon
    • Journal of Environmental Impact Assessment
    • /
    • v.33 no.2
    • /
    • pp.53-63
    • /
    • 2024
  • Biodiversity holds significant importance within the framework of environmental impact assessment, being utilized in site selection for development, understanding the surrounding environment, and assessing the impact on species due to disturbances. The field of environmental impact assessment has seen substantial research exploring new technologies and models to evaluate and predict biodiversity more accurately. While current assessments rely on data from fieldwork and literature surveys to gauge species richness indices, limitations in spatial and temporal coverage underscore the need for high-resolution biodiversity assessments through species richness mapping. In this study, leveraging data from the 4th National Ecosystem Survey and environmental variables, we developed a species distribution model using Random Forest. This model yielded mapping results of 24 mammalian species' distribution, utilizing the species richness index to generate a 100-meter resolution map of species richness. The research findings exhibited a notably high predictive accuracy, with the species distribution model demonstrating an average AUC value of 0.82. In addition, the comparison with National Ecosystem Survey data reveals that the species richness distribution in the high-resolution species richness mapping results conforms to a normal distribution. Hence, it stands as highly reliable foundational data for environmental impact assessment. Such research and analytical outcomes could serve as pivotal new reference materials for future urban development projects, offering insights for biodiversity assessment and habitat preservation endeavors.

An Application of Support Vector Machines to Customer Loyalty Classification of Korean Retailing Company Using R Language

  • Nguyen, Phu-Thien;Lee, Young-Chan
    • The Journal of Information Systems
    • /
    • v.26 no.4
    • /
    • pp.17-37
    • /
    • 2017
  • Purpose Customer Loyalty is the most important factor of customer relationship management (CRM). Especially in retailing industry, where customers have many options of where to spend their money. Classifying loyal customers through customers' data can help retailing companies build more efficient marketing strategies and gain competitive advantages. This study aims to construct classification models of distinguishing the loyal customers within a Korean retailing company using data mining techniques with R language. Design/methodology/approach In order to classify retailing customers, we used combination of support vector machines (SVMs) and other classification algorithms of machine learning (ML) with the support of recursive feature elimination (RFE). In particular, we first clean the dataset to remove outlier and impute the missing value. Then we used a RFE framework for electing most significant predictors. Finally, we construct models with classification algorithms, tune the best parameters and compare the performances among them. Findings The results reveal that ML classification techniques can work well with CRM data in Korean retailing industry. Moreover, customer loyalty is impacted by not only unique factor such as net promoter score but also other purchase habits such as expensive goods preferring or multi-branch visiting and so on. We also prove that with retailing customer's dataset the model constructed by SVMs algorithm has given better performance than others. We expect that the models in this study can be used by other retailing companies to classify their customers, then they can focus on giving services to these potential vip group. We also hope that the results of this ML algorithm using R language could be useful to other researchers for selecting appropriate ML algorithms.

Comparison of machine learning algorithms for Chl-a prediction in the middle of Nakdong River (focusing on water quality and quantity factors) (머신러닝 기법을 활용한 낙동강 중류 지역의 Chl-a 예측 알고리즘 비교 연구(수질인자 및 수량 중심으로))

  • Lee, Sang-Min;Park, Kyeong-Deok;Kim, Il-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.4
    • /
    • pp.277-288
    • /
    • 2020
  • In this study, we performed algorithms to predict algae of Chlorophyll-a (Chl-a). Water quality and quantity data of the middle Nakdong River area were used. At first, the correlation analysis between Chl-a and water quality and quantity data was studied. We extracted ten factors of high importance for water quality and quantity data about the two weirs. Algorithms predicted how ten factors affected Chl-a occurrence. We performed algorithms about decision tree, random forest, elastic net, gradient boosting with Python. The root mean square error (RMSE) value was used to evaluate excellent algorithms. The gradient boosting showed 10.55 of RMSE value for the Gangjeonggoryeong (GG) site and 11.43 of RMSE value for the Dalsung (DS) site. The gradient boosting algorithm showed excellent results for GG and DS sites. Prediction value for the four algorithms was also evaluated through the Receiver operating characteristic (ROC) curve and Area under curve (AUC). As a result of the evaluation, the AUC value was 0.877 at GG site and the AUC value was 0.951 at DS site. So the algorithm's ability to interpret seemed to be excellent.

Identifying Process Capability Index for Electricity Distribution System through Thermal Image Analysis (열화상 이미지 분석을 통한 배전 설비 공정능력지수 감지 시스템 개발)

  • Lee, Hyung-Geun;Hong, Yong-Min;Kang, Sung-Woo
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.3
    • /
    • pp.327-340
    • /
    • 2021
  • Purpose: The purpose of this study is to propose a system predicting whether an electricity distribution system is abnormal by analyzing the temperature of the deteriorated system. Traditional electricity distribution system abnormality diagnosis was mainly limited to post-inspection. This research presents a remote monitoring system for detecting thermal images of the deteriorated electricity distribution system efficiently hereby providing safe and efficient abnormal diagnosis to electricians. Methods: In this study, an object detection algorithm (YOLOv5) is performed using 16,866 thermal images of electricity distribution systems provided by KEPCO(Korea Electric Power Corporation). Abnormality/Normality of the extracted system images from the algorithm are classified via the limit temperature. Each classification model, Random Forest, Support Vector Machine, XGBOOST is performed to explore 463,053 temperature datasets. The process capability index is employed to indicate the quality of the electricity distribution system. Results: This research performs case study with transformers representing the electricity distribution systems. The case study shows the following states: accuracy 100%, precision 100%, recall 100%, F1-score 100%. Also the case study shows the process capability index of the transformers with the following states: steady state 99.47%, caution state 0.16%, and risk state 0.37%. Conclusion: The sum of caution and risk state is 0.53%, which is higher than the actual failure rate. Also most transformer abnormalities can be detected through this monitoring system.

Comparative characteristic of ensemble machine learning and deep learning models for turbidity prediction in a river (딥러닝과 앙상블 머신러닝 모형의 하천 탁도 예측 특성 비교 연구)

  • Park, Jungsu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.1
    • /
    • pp.83-91
    • /
    • 2021
  • The increased turbidity in rivers during flood events has various effects on water environmental management, including drinking water supply systems. Thus, prediction of turbid water is essential for water environmental management. Recently, various advanced machine learning algorithms have been increasingly used in water environmental management. Ensemble machine learning algorithms such as random forest (RF) and gradient boosting decision tree (GBDT) are some of the most popular machine learning algorithms used for water environmental management, along with deep learning algorithms such as recurrent neural networks. In this study GBDT, an ensemble machine learning algorithm, and gated recurrent unit (GRU), a recurrent neural networks algorithm, are used for model development to predict turbidity in a river. The observation frequencies of input data used for the model were 2, 4, 8, 24, 48, 120 and 168 h. The root-mean-square error-observations standard deviation ratio (RSR) of GRU and GBDT ranges between 0.182~0.766 and 0.400~0.683, respectively. Both models show similar prediction accuracy with RSR of 0.682 for GRU and 0.683 for GBDT. The GRU shows better prediction accuracy when the observation frequency is relatively short (i.e., 2, 4, and 8 h) where GBDT shows better prediction accuracy when the observation frequency is relatively long (i.e. 48, 120, 160 h). The results suggest that the characteristics of input data should be considered to develop an appropriate model to predict turbidity.

Robust Estimation of Hand Poses Based on Learning (학습을 이용한 손 자세의 강인한 추정)

  • Kim, Sul-Ho;Jang, Seok-Woo;Kim, Gye-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1528-1534
    • /
    • 2019
  • Recently, due to the popularization of 3D depth cameras, new researches and opportunities have been made in research conducted on RGB images, but estimation of human hand pose is still classified as one of the difficult topics. In this paper, we propose a robust estimation method of human hand pose from various input 3D depth images using a learning algorithm. The proposed approach first generates a skeleton-based hand model and then aligns the generated hand model with three-dimensional point cloud data. Then, using a random forest-based learning algorithm, the hand pose is strongly estimated from the aligned hand model. Experimental results in this paper show that the proposed hierarchical approach makes robust and fast estimation of human hand posture from input depth images captured in various indoor and outdoor environments.

Detection of Depression Trends in Literary Cyber Writers Using Sentiment Analysis and Machine Learning

  • Faiza Nasir;Haseeb Ahmad;CM Nadeem Faisal;Qaisar Abbas;Mubarak Albathan;Ayyaz Hussain
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.67-80
    • /
    • 2023
  • Rice is an important food crop for most of the population in Nowadays, psychologists consider social media an important tool to examine mental disorders. Among these disorders, depression is one of the most common yet least cured disease Since abundant of writers having extensive followers express their feelings on social media and depression is significantly increasing, thus, exploring the literary text shared on social media may provide multidimensional features of depressive behaviors: (1) Background: Several studies observed that depressive data contains certain language styles and self-expressing pronouns, but current study provides the evidence that posts appearing with self-expressing pronouns and depressive language styles contain high emotional temperatures. Therefore, the main objective of this study is to examine the literary cyber writers' posts for discovering the symptomatic signs of depression. For this purpose, our research emphases on extracting the data from writers' public social media pages, blogs, and communities; (3) Results: To examine the emotional temperatures and sentences usage between depressive and not depressive groups, we employed the SentiStrength algorithm as a psycholinguistic method, TF-IDF and N-Gram for ranked phrases extraction, and Latent Dirichlet Allocation for topic modelling of the extracted phrases. The results unearth the strong connection between depression and negative emotional temperatures in writer's posts. Moreover, we used Naïve Bayes, Support Vector Machines, Random Forest, and Decision Tree algorithms to validate the classification of depressive and not depressive in terms of sentences, phrases and topics. The results reveal that comparing with others, Support Vectors Machines algorithm validates the classification while attaining highest 79% f-score; (4) Conclusions: Experimental results show that the proposed system outperformed for detection of depression trends in literary cyber writers using sentiment analysis.

A Study for Estimation of High Resolution Temperature Using Satellite Imagery and Machine Learning Models during Heat Waves (위성영상과 머신러닝 모델을 이용한 폭염기간 고해상도 기온 추정 연구)

  • Lee, Dalgeun;Lee, Mi Hee;Kim, Boeun;Yu, Jeonghum;Oh, Yeongju;Park, Jinyi
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_4
    • /
    • pp.1179-1194
    • /
    • 2020
  • This study investigates the feasibility of three algorithms, K-Nearest Neighbors (K-NN), Random Forest (RF) and Neural Network (NN), for estimating the air temperature of an unobserved area where the weather station is not installed. The satellite image were obtained from Landsat-8 and MODIS Aqua/Terra acquired in 2019, and the meteorological ground weather data were from AWS/ASOS data of Korea Meteorological Administration and Korea Forest Service. In addition, in order to improve the estimation accuracy, a digital surface model, solar radiation, aspect and slope were used. The accuracy assessment of machine learning methods was performed by calculating the statistics of R2 (determination coefficient) and Root Mean Square Error (RMSE) through 10-fold cross-validation and the estimated values were compared for each target area. As a result, the neural network algorithm showed the most stable result among the three algorithms with R2 = 0.805 and RMSE = 0.508. The neural network algorithm was applied to each data set on Landsat imagery scene. It was possible to generate an mean air temperature map from June to September 2019 and confirmed that detailed air temperature information could be estimated. The result is expected to be utilized for national disaster safety management such as heat wave response policies and heat island mitigation research.

Classification Algorithm-based Prediction Performance of Order Imbalance Information on Short-Term Stock Price (분류 알고리즘 기반 주문 불균형 정보의 단기 주가 예측 성과)

  • Kim, S.W.
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.157-177
    • /
    • 2022
  • Investors are trading stocks by keeping a close watch on the order information submitted by domestic and foreign investors in real time through Limit Order Book information, so-called price current provided by securities firms. Will order information released in the Limit Order Book be useful in stock price prediction? This study analyzes whether it is significant as a predictor of future stock price up or down when order imbalances appear as investors' buying and selling orders are concentrated to one side during intra-day trading time. Using classification algorithms, this study improved the prediction accuracy of the order imbalance information on the short-term price up and down trend, that is the closing price up and down of the day. Day trading strategies are proposed using the predicted price trends of the classification algorithms and the trading performances are analyzed through empirical analysis. The 5-minute KOSPI200 Index Futures data were analyzed for 4,564 days from January 19, 2004 to June 30, 2022. The results of the empirical analysis are as follows. First, order imbalance information has a significant impact on the current stock prices. Second, the order imbalance information observed in the early morning has a significant forecasting power on the price trends from the early morning to the market closing time. Third, the Support Vector Machines algorithm showed the highest prediction accuracy on the day's closing price trends using the order imbalance information at 54.1%. Fourth, the order imbalance information measured at an early time of day had higher prediction accuracy than the order imbalance information measured at a later time of day. Fifth, the trading performances of the day trading strategies using the prediction results of the classification algorithms on the price up and down trends were higher than that of the benchmark trading strategy. Sixth, except for the K-Nearest Neighbor algorithm, all investment performances using the classification algorithms showed average higher total profits than that of the benchmark strategy. Seventh, the trading performances using the predictive results of the Logical Regression, Random Forest, Support Vector Machines, and XGBoost algorithms showed higher results than the benchmark strategy in the Sharpe Ratio, which evaluates both profitability and risk. This study has an academic difference from existing studies in that it documented the economic value of the total buy & sell order volume information among the Limit Order Book information. The empirical results of this study are also valuable to the market participants from a trading perspective. In future studies, it is necessary to improve the performance of the trading strategy using more accurate price prediction results by expanding to deep learning models which are actively being studied for predicting stock prices recently.