Acknowledgement
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2020R1G1A1008377).
References
- Asrafuzzaman, M., Fakhruddin, A., and Hossain, M.A. (2011). Reduction of turbidity of water using locally available natural coagulants, ISRN Microbiol., 1-6. https://doi.org/10.1155/2014/129580
- Ben-Hur, A., Horn, D., Siegelmann, H.T., and Vapnik, V. (2001). Support vector clustering, J. Mach., 2(Dec), 125-137.
- Bennett, N.D., Croke, B.F., Guariso, G., Guillaume, J.H., Hamilton, S.H., Jakeman, A.J., and Perrin, C. (2013). Characterising performance of environmental models, Environ. Modell. Softw., 40, 1-20. https://doi.org/10.1016/j.envsoft.2012.09.011
- Breiman, L. (2001). Random forests, Mach. Learn, 45, 5-32. https://doi.org/10.1023/A:1010933404324
- Chen, T. and Guestrin, C. (2016). "Xgboost: A scalable tree boosting system", In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13-17 August, San Francisco, CA, USA. Association for computing Machinery.
- Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation, 1078.
- Friedman, J.H. (2001). Greedy function approximation: A gradient boosting machine, Ann. Stat., 29(5), 1189-1232. https://doi.org/10.1214/aos/1013203451
- Genuer, R., Poggi, J.M. and Tuleau-Malot, C. (2010). Variable selection using random forests, Pattern Recognit. Lett., 31, 2225-2236. https://doi.org/10.1016/j.patrec.2010.03.014
- Greff, K., Srivastava, R.K., Koutnik, J., Steunebrink, B.R., and Schmidhuber, J. (2016). LSTM: A search space odyssey, IEEE Trans. Neural Netw., 28(10), 2222-2232.
- Hinton, G.E., Osindero, S., and The, Y.W. (2006). A fast learning algorithm for deep belief nets, Neural Comput., 18(7), 1527-1554. https://doi.org/10.1162/neco.2006.18.7.1527
- Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory, Neural Comput., 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
- Hollister, J.W., Milstead, W.B. and Kreakie, B.J. (2016). Modeling lake trophic state: A random forest approach, Ecosphere, 7, e01321. https://doi.org/10.1002/ecs2.1321
- Huang, J., Gao, J., and Zhang, Y. (2015). Combination of artificial neural network and clustering techniques for predicting phytoplankton biomass of Lake Poyang, China, Limnol., 16, 179-191. https://doi.org/10.1007/s10201-015-0454-7
- Islam, M.Z., Islam, M.M. and Asraf, A. (2020). A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images, Inform. Med. Unlocked, 100412. https://doi.org/10.1016/j.imu.2020.100412
- Kim, T.Y., and Cho, S.B. (2019). Predicting residential energy consumption using CNN-LSTM neural networks, Energy, 182, 72-81. https://doi.org/10.1016/j.energy.2019.05.230
- Kisi, O. (2012). Modeling discharge-suspended sediment relationship using least square support vector machine, J. Hydrol., 456, 110-120. https://doi.org/10.1016/j.jhydrol.2012.06.019
- Liu, M., and Lu, J. (2014). Support vector machine-an alternative to artificial neuron network for water quality forecasting in an agricultural nonpoint source polluted river?, Environ. Sci. Pollut. R., 21, 11036-11053. https://doi.org/10.1007/s11356-014-3046-x
- Mikolov, T., Kombrink, S., Burget, L., Cernocky, J., and Khudanpur. S., (2011). "Extensions of recurrent neural network language model", In 2011 IEEE international conference on acoustics, speech and signal processing (ICASSP), 22-27 May, IEEE.
- Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., and Veith. T.L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, Am. Soc. Agric. Biol. Eng., 50, 885-900.
- Pal, M. (2005). Random forest classifier for remote sensing classification, Int. J. Remote. Sens., 26(1), 217-222. https://doi.org/10.1080/01431160412331269698
- Park, J. and Lee, H. (2020). Prediction of high turbidity in rivers using LSTM algorithm, J. Korean Soc. Water Wastewater, 34, 35-43. https://doi.org/10.11001/jksww.2020.34.1.035
- Park, H.S., Chung, S.W. and Choung, S.A. (2017). Analyzing the effect of an extreme turbidity flow event on the dam reservoirs in North Han River basin, J. Korean Soc. Water Environ., 33, 282-290. https://doi.org/10.15681/KSWE.2017.33.3.282
- Park, J., Park, J.H., Choi, J.S., Joo, J.C., Park, K., Yoon, H.C., Park, C.Y., Lee, W.H., and Heo, T.Y. (2020). Ensemble model development for the prediction of a disaster index in water treatment systems, Water, 12, 3195. https://doi.org/10.3390/w12113195
- Park, Y., Cho, K.H., Park, J., Cha, S.M. and Kim, J.H. (2015). Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea Sci. Total Environ., 502, 31-41. https://doi.org/10.1016/j.scitotenv.2014.09.005
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R. and Dubourg, V. (2011). Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., 12, 2825-2830.
- Shin, Y., Kim, T., Hong, S., Lee, S., Lee, E., Hong, S., Lee, C., Kim, T., Park, M.S. and Park, J. (2020). Prediction of chlorophyll-a concentrations in the Nakdong River using machine learning methods, Water, 12, 1822. https://doi.org/10.3390/w12061822
- Singh, K.P., Basant, N., and Gupta, S. (2011). Support vector machines in water quality management, Anal. Chim. Acta., 703, 152-162. https://doi.org/10.1016/j.aca.2011.07.027
- Suttle, K.B., Power, M.E., Levine, J.M., and McNeely, C. (2004). How fine sediment in riverbeds impairs growth and survival of juvenile salmonids, Ecol. Appl., 14(4), 969-974. https://doi.org/10.1890/03-5190
- United States Geological Survey (USGS). (2011). Water-quality Data for the Russian River Basin, Mendocino and Sonoma Counties, California, 2005-2010, USGS, Report-data series 610.
- Vapnik, V. (1995). The Nature of Statistical Learning Theory. New York, Springer2-Verlag.
- Wu, N., Huang, J., Schmalz, B. and Fohrer, N. (2014). Modeling daily chlorophyll a dynamics in a German lowland river using artificial neural networks and multiple linear regression approaches, Limnol., 15, 47-56. https://doi.org/10.1007/s10201-013-0412-1
- XGBoost. Available online: https://xgboost.readthedocs.io/en/latest/build.html (February 15, 2020).
- Zaremba, W., Sutskever, I. and Vinyals, O. (2014). Recurrent neural network regularization.
- Zhang, D., Qian, L., Mao, B., Huang, C., Huang, B. and Si, Y. (2018). A data-driven design for fault detection of wind turbines using random forests and XGboost, IEEE Access, 6:21020-21031. https://doi.org/10.1109/access.2018.2818678
- Zhang, L., Tan, J., Han, D., and Zhu, H. (2017). From machine learning to deep learning: progress in machine intelligence for rational drug discovery, Drug Discov. Today, 22(11), 1680-1685. https://doi.org/10.1016/j.drudis.2017.08.010
- Zhou, J., Wang, Y., Xiao, F., Wang, Y. and Sun, L. (2018). Water quality prediction method based on IGRA and LSTM, Water, 10, 1148. https://doi.org/10.3390/w10091148