References
- Altinbas M. (2009). Environmental technologies to treat nitrogen pollution. IWA Publishing, London, UK.
- Bond, P.L., Keller, J. and Blackall, L. (1999). Anaerobic phosphate release from activated sludge with enhanced biological phosphorous removal, A possible mechanism of intracellular pH control, Biotechnol. Bioeng., 63, 507-515. https://doi.org/10.1002/(SICI)1097-0290(19990605)63:5<507::AID-BIT1>3.0.CO;2-A
- Celen, I. and Turker, M. (2001). Recovery of ammonia as struvite from anaerobic digester effluents, Environ. Technol., 22, 1263-1272. https://doi.org/10.1080/09593332208618192
- Chai, H.W., Choi, Y.H., Kim, M.W., Kim, Y.J. and Jung, S.H. (2020). Trends of microbial electrochemical technologies for nitrogen removal in wastewater treatment, J. Korean Soc. Water Wastewater, 34(5), 345-356. https://doi.org/10.11001/jksww.2020.34.5.345
- Chauhan, C., Vyas, P. and Joshi, M. (2011). Growth and characterization of struvite-k crystals, Cryst. Res. Technol., 46(2), 187-194. https://doi.org/10.1002/crat.201000587
- Chen, Y., Jiang, S., Yuan, H., Zhou, Q. and Gu, G. (2007). Hydrolysis and acidification of waste activated sludge at different pHs, Water Res., 41, 683-689. https://doi.org/10.1016/j.watres.2006.07.030
- Cordell, D. and White, S. (2011). Peak phosphorus: Clarifying the key issues of a vigorous debate about long-term phosphorus security, Sustainability, 3(10), 2027-2049. https://doi.org/10.3390/su3102027
- Crocetti, G., Hugenholtz, P., Bond, P., Schuler, A., Keller, J., Jenkins, D. and Blackall, L. (2000). Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation, Appl. Environ. Microbiol., 66(3), 1175-82. https://doi.org/10.1128/AEM.66.3.1175-1182.2000
- Crocetti, G., Banfield, J., Keller, J. Philip, L. Bond, P. and Blackall, L. (2002). Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes, Microbiol., 148, 3353-3364. https://doi.org/10.1099/00221287-148-11-3353
- Fischer, F., Bastian, C., Happe, M., Mabillard, E., Schmidt, N. (2011). Microbial fuel cell enables phosphate recovery from digested sewage sludge as struvite, Bioresour. Technol., 102(10), 5824-5830. https://doi.org/10.1016/j.biortech.2011.02.089
- Gaterell, M., Gay, R., Wilson, R., Gochin, R. and Lester, J. (2000). An economic and environmental evaluation of the opportunities for substituting phosphorus recovered from wastewater treatment works in existing UK fertiliser markers, Environ. Technol., 21(9), 1067-1084. https://doi.org/10.1080/09593332108618050
- Hagino, T., Koga, D. and Tsukui, R. (2014). Phosphorus recovery from sewage and high efficiency sludge dewatering - Toward the development of a self-supporting phosphorus recovery procss, Ebara Eng. Review, 243, 9-14.
- Hesselmann, R., Werlen, C., Hahn, D., van der Meer J. and Zehnder, A. (1999). Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge, Syst. Appl. Microbiol., 22(3), 454-65. https://doi.org/10.1016/S0723-2020(99)80055-1
- Hirota, R., Kuroda, A., Kato, J. and Ohtake, H. (2010). Bacterial phosphate metabolism and its application to phosphorus recovery and industrial bioprocesses, J. Biosci. Bioeng., 109, 423-432. https://doi.org/10.1016/j.jbiosc.2009.10.018
- Kong, Y., Nielsen, J. and Nielsen, P. (2005). Identity and ecophysiology of uncultured actinobacterial polyphosphate-accumulating organisms in full-scale enhanced biological phosphorus removal plants, Appl. Environ. Microbiol., 71(7), 4076-85. https://doi.org/10.1128/AEM.71.7.4076-4085.2005
- Kuroda, A., Takiguchi, N., Gotanda, T., Nomura, K., Kato, J., Ikeda, T. and Ohtake, H. (2002). A simple method to release polyphosphate from activated sludge for phosphorus reuse and recycling, Biotechnol. Bioeng., 78(3), 332-338.
- Liao, P., Wong, W. and Lo, K. (2005). Release of phosphorus from sewage sludge using microwave technology, J. Environ. Eng. Sci., 4, 77-81. https://doi.org/10.1139/s04-056
- Lin, L., Yuan, S., Chen, J., Xu, Z. and Lu, X. (2009). Removal of ammonia nitrogen in wastewater by microwave radiation, J. Hazard. Mater., 161, 1063-1068. https://doi.org/10.1016/j.jhazmat.2008.04.053
- Luz, E. and Yoav, B. (2004). Recent advances in removing phosphorus from wastewater and its future use as fertilizer, Water Res., 38(19), 4222-4246. https://doi.org/10.1016/j.watres.2004.07.014
- Marchi, A., Geerts, S., Weemaes, M., Schiettecatte, W. and Vanhoof, C. (2017). Full-scale phosphorus recovery from digested waste water sludge in belgium - Part I: Technical achievements and challenges, Water Sci. Technol., 71(4), 487-494.
- Mathew, M., Kingsbury, P., Takagi, S. and Brown, W. (1982). A new struvite-type compound, magnesium sodium phosphate heptahydrate, Acta Crystallization, B38, 40-44.
- McCarty, P.L. (1972). Stoichiometry of Biological Reactions, International Conference Toward a Unified Concept of Biological waste treatments Design.
- Ministry of Environment, Sewage statistics (2015). http://www.me.go.kr/home/web/policy_data/read.do?menuId=10264&seq=6937 (October 22, 2020)
- Santinelli, M., Eusebi, A., Santini, M. and Battistoni, P. (2013). Struvite crystallization from anaerobic digester supernatants: Influence on the ammonia efficiency of the process variables and the chemicals dosage modality, Chem. Eng. Trans., 32, 2047-2052.
- Seviour, R., Mino, T. and Onuki, M. (2003). The microbiology of biological phosphorus removal in activated sludge systems, FEMS Microbiol. Rev., 27, 99-127. https://doi.org/10.1016/S0168-6445(03)00021-4
- Stolzenburg, P., Capdevielle, A., Teychene, S. and Biscans, B. (2015). Struvite precipitation with MgO as a precursor: Application to wastewater treatment, Chem. Eng. Sci., 133, 9-15. https://doi.org/10.1016/j.ces.2015.03.008
- Tchobanoglous, G., Burton, F. and Stensel, H. (2004). Wastewater Engineering, Treatment and Reuse. 4th Edn, McGraw-Hill, Singapore.
- Wingender, J., Neu, T. and Flemming, H. (1999). Microbial Extracellular Polymeric Substances: Characterization, Structure and Function. 1st Edn, Springer-Verlag, Berlin, Germany.
- Wong, M., Tan, F., Ng, W. and Liu, W. (2004). Identification and occurrence of tetrad-forming Alphaproteobacteria in anaerobic-aerobic activated sludge processes, Microbiol., 150(11), 3741-3748. https://doi.org/10.1099/mic.0.27291-0
- Xu, Y., Hu, H., Liu, J., Luo, J., Qian, G. and Wang, A. (2015). pH dependent phosphorus release from waste activated sludge: contributions of phosphorus speciation, Chem. Eng. J., 267, 260-265. https://doi.org/10.1016/j.cej.2015.01.037
- Zhang, H., Fan, W., Wang, Y., Sheng, G., Xia, C., Zeng, R. and Yu, H. (2013). Species of phosphorus in the extracellular polymeric substances of EBPR sludge, Bioresour. Technol., 142, 714-718. https://doi.org/10.1016/j.biortech.2013.05.068