Rectangular concrete-filled steel tubular (RCFST) column, a type of concrete-filled steel tubular (CFST), is widely used in compression members of structures because of its advantages. This paper proposes a robust machine learning-based framework for predicting the ultimate compressive strength of RCFST columns under both concentric and eccentric loading. The gradient boosting neural network (GBNN), an efficient and up-to-date ML algorithm, is utilized for developing a predictive model in the proposed framework. A total of 890 experimental data of RCFST columns, which is categorized into two datasets of concentric and eccentric compression, is carefully collected to serve as training and testing purposes. The accuracy of the proposed model is demonstrated by comparing its performance with seven state-of-the-art machine learning methods including decision tree (DT), random forest (RF), support vector machines (SVM), deep learning (DL), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), and categorical gradient boosting (CatBoost). Four available design codes, including the European (EC4), American concrete institute (ACI), American institute of steel construction (AISC), and Australian/New Zealand (AS/NZS) are refereed in another comparison. The results demonstrate that the proposed GBNN method is a robust and powerful approach to obtain the ultimate strength of RCFST columns.
Byeonghyun Hwang;Hangseok Choi;Kibeom Kwon;Young Jin Shin;Minkyu Kang
Geomechanics and Engineering
/
제38권5호
/
pp.507-515
/
2024
An accurate estimation of the geotechnical parameters in front of tunnel faces is crucial for the safe construction of underground infrastructure using tunnel boring machines (TBMs). This study was aimed at developing a data-driven model for predicting the rock quality designation (RQD) of the ground formation ahead of tunnel faces. The dataset used for the machine learning (ML) model comprises seven geological and mechanical features and 564 RQD values, obtained from an earth pressure balance (EPB) shield TBM tunneling project beneath the Han River in the Republic of Korea. Four ML algorithms were employed in developing the RQD prediction model: k-nearest neighbor (KNN), support vector regression (SVR), random forest (RF), and extreme gradient boosting (XGB). The grid search and five-fold cross-validation techniques were applied to optimize the prediction performance of the developed model by identifying the optimal hyperparameter combinations. The prediction results revealed that the RF algorithm-based model exhibited superior performance, achieving a root mean square error of 7.38% and coefficient of determination of 0.81. In addition, the Shapley additive explanations (SHAP) approach was adopted to determine the most relevant features, thereby enhancing the interpretability and reliability of the developed model with the RF algorithm. It was concluded that the developed model can successfully predict the RQD of the ground formation ahead of tunnel faces, contributing to safe and efficient tunnel excavation.
Min-Woo Lee;Young-Sin Choi;Do-Hun Kwon;Eun-Ji Cha;Hee-Bok Kang;Jae-In Jeong;Seok-Jae Lee;Hwi-Jun Kim
Archives of Metallurgy and Materials
/
제67권4호
/
pp.1539-1542
/
2022
Artificial intelligence operated with machine learning was performed to optimize the amount of metalloid elements (Si, B, and P) subjected to be added to a Fe-based amorphous alloy for enhancement of soft magnetic properties. The effect of metalloid elements on magnetic properties was investigated through correlation analysis. Si and P were investigated as elements that affect saturation magnetization while B was investigated as an element that affect coercivity. The coefficient of determination R2(coefficient of determination) obtained from regression analysis by learning with the Random Forest Algorithm (RFR) was 0.95 In particular, the R2 value measured after including phase information of the Fe-Si-B-P ribbon increased to 0.98. The optimal range of metalloid addition was predicted through correlation analysis method and machine learning.
선박이 접안할 때 발생하는 접안에너지에 가장 영향력이 큰 요소는 접안속도이며, 과도한 경우 사고로 이어질 수 있다. 접안속도의 결정에 영향을 미치는 요소는 다양하지만 기존 연구에서는 일반적으로 선박 크기에 제한하여 분석하였다. 따라서 본 연구에서는 다양한 선박 접안속도의 영향요소를 반영하여 분석하고 그에 따른 중요도를 도출하고자 한다. 분석에 활용한 데이터는 국내 한 탱커부두의 선박 접안속도를 실측한 것을 바탕으로 하였다. 수집된 데이터를 활용하여 머신러닝 분류 알고리즘인 의사결정나무(Decision Tree), 랜덤포레스트(Random Forest), 로지스틱회귀(Logistic Regression), 퍼셉트론(Perceptron)을 비교분석하였다. 알고리즘 평가 방법으로는 혼동 행렬에 따른 모델성능 평가지표를 사용하였다. 분석 결과, 가장 성능이 좋은 알고리즘으로는 퍼셉트론이 채택되었으며 그에 따른 접안속도 영향요인의 중요도는 선박 크기(DWT), 부두 위치(Jetty No.), 재화상태(State) 순으로 나타났다. 이에 따라 선박 접안 시, 선박의 크기를 비롯하여 부두 위치, 재화 상태 등 다양한 요인을 고려하여 접안속도를 설계하여야 한다.
본 연구에서는 적조 Cochlodinium Polykrikoide를 기계학습 방법과 정지궤도 해색위성 영상을 활용하여 탐지하는 방법을 제안한다. 기계학습 모형을 학습시키기 위해 GOCI Level2 자료를 활용하였으며, 국립수산과학원의 적조 속보 자료를 활용하였다. 기계학습 모델은 로지스틱 회귀모형, 의사결정나무 모형, 랜덤포래스트 모형을 사용하였다. 성능 평가 결과 기계학습을 사용하지 않은 전통적인 GOCI 영상 기반 적조 탐지 알고리즘(Son et al.,2012) (75%)과 비교해보았을 때 약 13~22%p (88~98%)의 정확도 향상을 확인할 수 있었다. 또한 기계학습 모형 간 탐지 성능을 비교 분석해본 결과 랜덤 포레스트 모형(98%)이 가장 높은 탐지 정확도를 보였다. 이러한 기계학습 기반 적조 탐지 알고리즘은 향후 적조를 조기에 탐지하고 그 이동과 확산을 추적 모니터링하는데 활용될 수 있을 것이라고 판단된다.
본 연구는 정상 가동 중에도 회전수가 변하는 기기의 이상 및 고장 진단 방안을 다루고 있다. 회전수가 변함에 따라 비정상적 시계열 특성을 내포한 센서 데이터에 기계학습을 적용할 수 있는 절차를 제시하고자 하였다. 기계학습으로는 k-Nearest Neighbor(k-NN), Support Vector Machine(SVM), Random Forest을 사용하여 이상 및 고장 진단을 수행하였다. 또한 진단 정확성을 비교할 목적으로 이상 감지에 오토인코더, 고장진단에는 합성곱 기반의 Conv1D도 추가로 이용하였다. 비정상적 시계열로부터 통계 및 주파수 속성으로 구성된 시계열 특징 벡터를 추출하고, 추출된 특징 벡터에 정규화 및 차원 축소 기법을 적용하였다. 특징 벡터의 선택과 정규화, 차원 축소 여부에 따라 달라지는 기계학습의 진단 정확도를 비교하였다. 또한, 적용된 학습 알고리즘 별로 초매개변수 최적화 과정과 적층 구조를 설명하였다. 최종적으로 기존의 심층학습과 비교하여, 기계학습도 가변 회전기기의 고장을 정확하게 진단할 수 있는 절차를 제시하였다.
저수지는 국내 영농환경에서 주요한 용수 공급처이며, 저수지의 저수량 파악은 농업용수의 활용 및 관리차원에서 중요하다. 위성영상을 활용한 원격탐사는 저수지와 같이 광역적으로 분포하는 객체에 대하여 정기적인 모니터링을 할 수 있는 효과적인 수단으로, 본 연구에서는 Sentinel-1 Synthetic Aperture Radar (SAR) 영상을 통해 영상분류 및 영상분할 알고리즘을 적용하여 국내 저수지 53개소의 수표면적 탐지를 수행하였다. 사용한 알고리즘은 Neural Network (NN), Support Vector Machine (SVM), Random Forest (RF), Otsu, Watershed (WS), Chan-Vese (CV)로 총 6가지이며, 드론으로 촬영한 실측 정사영상으로 수표면적 탐지 결과를 평가하였다. 각 알고리즘으로부터 산출된 수표면적과 실측 수표면적간의 상관성은 NN 0.9941, SVM 0.9942, RF 0.9940, Otsu 0.9922, WS 0.9709, CV 0.9736로 나타났으며, 저수지 유효저수량의 규모가 클수록 더 높은 선형 상관관계를 보였다. 혼동 행렬로부터 산출한 정확도, 정밀도, 재현율을 통해 알고리즘간 수표면적 탐지 정확도와 탐지 경향을 분석하였다. 정확도의 경우 각 10만 m3 미만 저수지에서 WS가 0.8752, 10만~30만 m3에서 Otsu가 0.8845, 30만~50만 m3에서 RF가 0.9100, 50만 m3 이상에서 Otsu와 CV가 0.9400으로 가장 높은 수치를 보였다. WS의 경우 수표면적을 미탐지하는 경향으로 인해 낮은 재현율을 보였고, NN, SVM, RF의 경우 과대 탐지로 인한 낮은 정밀도를 보였다. SAR 영상을 통한 수표면적 탐지 시 저수지 수표면의 수생식물 및 인공건축물이 미탐지를 발생시키는 오차 요소로 작용함을 분석결과 및 실측영상을 통해 확인하였다.
저출산과 노령화로 보험 수요가 지속해서 감소하고 있다. 나아가 언택트 소비가 주류가 되면서 기존의 대면 서비스를 중심으로 한 보험상품 마케팅은 실효성이 크게 떨어지고 있다. 그러므로 보험업계는 비대면 서비스를 기반으로 한 새로운 마케팅이 절실한 시점이다. 확보된 내 외부 및 공공데이터를 바탕으로 보험 트렌드를 반영한 맞춤형 전략을 통해 기존 고객의 로열티를 강화하고 신규 고객을 확보할 수 있는 개인 맞춤형 보험 상품 추천시스템을 제안하고자 한다. 보험회사 데이터베이스에 등록된 고객을 대상으로 공공 데이터(시군구별 총인구수, 건강생활 실천율, 고령 인구 비율, 출생률, 노인여가복지 수, 연령대별 경제활동참가율 등), 고객 개인정보 및 기 계약 정보를 사용하여 인구통계학 기반과 모델 기반 추천시스템을 설계하였다. 인구통계학 기반 추천시스템은 군집화된 고객 내 코사인 유사도를 계산하여 유사도가 높은 고객들이 많이 가입한 보험상품을 추천하였다. K-means를 이용한 군집화 방식과 고객의 지역, 성별 및 연령대 기준의 Segmentation 방식으로 각각 수행하였다. 모델 기반 추천시스템은 Decision Tree, Random Forest Classifier를 사용하여 각각 추천시스템을 설계하였다. 본 연구 결과 군집 된 고객 간 코사인 유사도를 활용한 인구통계학 기반 추천시스템의 성능이 가장 우수하였다. 이는 개인의 특성(성별, 나이 등) 및 환경적인(경제력, 직업 거주지역 등) 요소에 따라 보험 상품을 선택하기 때문에 고객 간 유사도가 보험 추천시스템의 성능에 주요 요소인 것을 보여준다.
신약을 개발하는 한 가지 방법의 하나인 신약 재창출(Drug Repositioning)은 이미 사람들에게 사용할 수 있도록 승인된 약물들이 다른 용도로 사용되도록 하여 새로운 적응증을 발견하는 유용한 방법이다. 최근에는 머신러닝 기술의 발달로 방대한 생물학적 정보를 분석하여 신약 개발에 활용하는 경우가 증가하고 있다. 신약 재창출에 머신러닝 기술을 활용하면 효과적인 치료법을 신속하게 찾아내는 데 도움을 줄 것이다. 현재 심각한 급성 호흡기 증후군인 코로나바이러스(COVID-19)에 의한 신종 질병으로 전 세계가 힘든 시간을 보내고 있다. 이미 임상적으로 승인된 약물의 용도를 변경하는 신약 재창출은 COVID-19 환자를 치료하기 위한 치료제의 대안이 될 수 있다. 본 연구는 머신러닝 기법을 활용하여 신약 재창출 분야에 대한 연구 동향을 살펴보고자 한다. Pub Med에서 웹 스크래핑 기법을 사용하여 'Drug Repositioning'이라는 키워드로 총 4,821건의 논문을 수집하였다. 데이터 전처리 후, 4,419건의 논문을 대상으로 빈도분석, LDA 기반 토픽모델링, Random Forest 분류 분석 및 예측 성능평가를 수행하였다. Word2vec 모델을 기반으로 연관어를 분석하였고, PCA 차원 축소 후 K-Means 군집화하여 레이블을 생성한 후, t-SNE 알고리즘을 이용하여 논문이 형성하고 있는 그룹을 시각화하고, LDA 결과에 계층적 군집화를 적용하여 히트맵으로 시각화하였다. 본 연구는 신약 재창출과 관련된 연구 주제가 무엇인지를 파악하고, 머신러닝 알고리즘을 사용하여 대량의 문헌에서 의미 있는 주제를 도출하고 시각화하는 방법을 제시하였다. 향후 신약 재창출 분야의 연구나 개발 전략을 수립하기 위한 기초자료로 활용되는 데 도움을 줄 것이라고 기대한다.
Kubra Ertas;Ihsan Pence;Melike Siseci Cesmeli;Zuhal Yetkin Ay
Journal of Periodontal and Implant Science
/
제53권1호
/
pp.38-53
/
2023
Purpose: The current Classification of Periodontal and Peri-Implant Diseases and Conditions, published and disseminated in 2018, involves some difficulties and causes diagnostic conflicts due to its criteria, especially for inexperienced clinicians. The aim of this study was to design a decision system based on machine learning algorithms by using clinical measurements and radiographic images in order to determine and facilitate the staging and grading of periodontitis. Methods: In the first part of this study, machine learning models were created using the Python programming language based on clinical data from 144 individuals who presented to the Department of Periodontology, Faculty of Dentistry, Süleyman Demirel University. In the second part, panoramic radiographic images were processed and classification was carried out with deep learning algorithms. Results: Using clinical data, the accuracy of staging with the tree algorithm reached 97.2%, while the random forest and k-nearest neighbor algorithms reached 98.6% accuracy. The best staging accuracy for processing panoramic radiographic images was provided by a hybrid network model algorithm combining the proposed ResNet50 architecture and the support vector machine algorithm. For this, the images were preprocessed, and high success was obtained, with a classification accuracy of 88.2% for staging. However, in general, it was observed that the radiographic images provided a low level of success, in terms of accuracy, for modeling the grading of periodontitis. Conclusions: The machine learning-based decision system presented herein can facilitate periodontal diagnoses despite its current limitations. Further studies are planned to optimize the algorithm and improve the results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.