DOI QR코드

DOI QR Code

Analysis of Feature Importance of Ship's Berthing Velocity Using Classification Algorithms of Machine Learning

머신러닝 분류 알고리즘을 활용한 선박 접안속도 영향요소의 중요도 분석

  • Lee, Hyeong-Tak (Ocean Science and Technology School, Korea Maritime & Ocean University) ;
  • Lee, Sang-Won (Graduate School, Kobe University) ;
  • Cho, Jang-Won (Korea Institute of Maritime and Fisheries Technology) ;
  • Cho, Ik-Soon (Division of Global Maritime Studies, Korea Maritime & Ocean University)
  • 이형탁 (한국해양대학교 해양과학기술전문대학원) ;
  • 이상원 (고베대학교 대학원) ;
  • 조장원 (한국해양수산연수원) ;
  • 조익순 (한국해양대학교 해사글로벌학부)
  • Received : 2020.03.06
  • Accepted : 2020.04.27
  • Published : 2020.04.30

Abstract

The most important factor affecting the berthing energy generated when a ship berths is the berthing velocity. Thus, an accident may occur if the berthing velocity is extremely high. Several ship features influence the determination of the berthing velocity. However, previous studies have mostly focused on the size of the vessel. Therefore, the aim of this study is to analyze various features that influence berthing velocity and determine their respective importance. The data used in the analysis was based on the berthing velocity of a ship on a jetty in Korea. Using the collected data, machine learning classification algorithms were compared and analyzed, such as decision tree, random forest, logistic regression, and perceptron. As an algorithm evaluation method, indexes according to the confusion matrix were used. Consequently, perceptron demonstrated the best performance, and the feature importance was in the following order: DWT, jetty number, and state. Hence, when berthing a ship, the berthing velocity should be determined in consideration of various features, such as the size of the ship, position of the jetty, and loading condition of the cargo.

선박이 접안할 때 발생하는 접안에너지에 가장 영향력이 큰 요소는 접안속도이며, 과도한 경우 사고로 이어질 수 있다. 접안속도의 결정에 영향을 미치는 요소는 다양하지만 기존 연구에서는 일반적으로 선박 크기에 제한하여 분석하였다. 따라서 본 연구에서는 다양한 선박 접안속도의 영향요소를 반영하여 분석하고 그에 따른 중요도를 도출하고자 한다. 분석에 활용한 데이터는 국내 한 탱커부두의 선박 접안속도를 실측한 것을 바탕으로 하였다. 수집된 데이터를 활용하여 머신러닝 분류 알고리즘인 의사결정나무(Decision Tree), 랜덤포레스트(Random Forest), 로지스틱회귀(Logistic Regression), 퍼셉트론(Perceptron)을 비교분석하였다. 알고리즘 평가 방법으로는 혼동 행렬에 따른 모델성능 평가지표를 사용하였다. 분석 결과, 가장 성능이 좋은 알고리즘으로는 퍼셉트론이 채택되었으며 그에 따른 접안속도 영향요인의 중요도는 선박 크기(DWT), 부두 위치(Jetty No.), 재화상태(State) 순으로 나타났다. 이에 따라 선박 접안 시, 선박의 크기를 비롯하여 부두 위치, 재화 상태 등 다양한 요인을 고려하여 접안속도를 설계하여야 한다.

Keywords

References

  1. Breiman, L.(2001), Random forests, Machine learning, Vol. 45, No. 1, pp. 5-32. https://doi.org/10.1023/A:1010933404324
  2. Breiman, L., J. H. Friedman, R. Olshen, and C. J. Stone (1984), Classification and Regression Trees, Wordsworth.
  3. Brolsma, J. U.(1977), On Fender Design and Berthing Velocities, Proc. International Navigation Congress, Section II, Subject 4, pp. 87-100.
  4. Cho, I. S., J. W. Cho, and S. W. Lee(2018), A Basic Study on the Measured Data Analysis of Berthing Velocity of Ships, Journal of Coastal Disaster Prevention, Vol. 5, No. 2, pp. 61-71. https://doi.org/10.20481/kscdp.2018.5.2.61
  5. Diersen, S., E. J. Lee, D. Spears, P. Chen, and L. Wang (2011), Classification of seismic windows using artificial neural networks, Procedia computer science, Vol. 4, pp. 1572-1581. https://doi.org/10.1016/j.procs.2011.04.170
  6. Han, J., J. Pei, and M. Kamber(2011), Data Mining: Concepts and Techniques, Elsevier.
  7. Harris, D. and S. Harris(2007), Digital design and computer architecture, Morgan Kaufmann.
  8. Hastie, T., R. Tibshirani, and J. Friedman(2009), The elements of statistical learning: data mining, inference, and prediction, Springer Science & Business Media.
  9. Jun, S. Y., Y. M. Kim, B. G. Woo, and H. Chung(2008), A Systematic Approach to Decide Maximum Berthing Ship Size Coupled with Berth Design Criteria, Journal of the Korean Society of Marine Environment & Safety, Vol. 14, No. 1, pp. 45-54.
  10. Kanal, L. N.(2003), Perceptron, Encyclopedia of Computer Science, pp. 1383-1385.
  11. Kim, M. K., J. H. Kim, and H. Yang(2019), Gyroscope Signal Denoising of Ship's Autopilot using Kalman Filter and Multi-Layer Perceptron, Journal of the Korean Society of Marine Environment & Safety, Vol. 25, No. 6, pp. 809-818. https://doi.org/10.7837/kosomes.2019.25.6.809
  12. Kohavi, R.(1995), A study of cross-validation and bootstrap for accuracy estimation and model selection. In Ijcai, Vol. 14, No. 2, pp. 1137-1145.
  13. Lee, S. W., J. W. Cho, and I. S. Cho(2019), Estimation of Berthing Velocity Using Probability Distribution Characteristics in Tanker Terminal. Journal of Navigation and Port Research, Vol. 43, No. 3, pp. 186-196. https://doi.org/10.5394/KINPR.2019.43.3.186
  14. Ministry of oceans and fisheries(2017), Harbor and Fishery Design Criteria.
  15. PIANC(2020), Berthing Velocity Analysis of Seagoing Vessels over 30,000DWT, Working group 145 of the MARITIME NAVIGATION COMMISSION.
  16. Rosenblatt, F.(1962). Principles of Neurodynamics, Spartan Books.
  17. Roubos, A., L. Groenewegen, and D. J. Peters(2017), Berthing velocity of large seagoing vessels in the port of Rotterdam. Marine Structures, Vol. 51, pp. 202-219. https://doi.org/10.1016/j.marstruc.2016.10.011
  18. Shalev-Shwartz, S. and S. Ben-David(2014), Understanding machine learning: From theory to algorithms, Cambridge university press.
  19. Tukey, J. W.(1977), Exploratory Data Analysis, Addison-Wesley Pub. Co.
  20. Zheng, A. and A. Casari(2018), Feature Engineering for Machine Learning: Principles and Techniques for Data Scientist, O'Reilly Media Inc.

Cited by

  1. Development of Machine Learning Strategy for Predicting the Risk Range of Ship’s Berthing Velocity vol.8, pp.5, 2020, https://doi.org/10.3390/jmse8050376
  2. 폐경 여성에서 트리기반 머신러닝 모델로부터 골다공증 예측 vol.43, pp.6, 2020, https://doi.org/10.17946/jrst.2020.43.6.495
  3. An AIS Data-Driven Approach to Analyze the Pattern of Ship Trajectories in Ports Using the DBSCAN Algorithm vol.11, pp.2, 2021, https://doi.org/10.3390/app11020799
  4. Data-Driven Analysis for Safe Ship Operation in Ports Using Quantile Regression Based on Generalized Additive Models and Deep Neural Network vol.21, pp.24, 2020, https://doi.org/10.3390/s21248254
  5. Analysis of Trends in Mega-Sized Container Ships Using the K-Means Clustering Algorithm vol.12, pp.4, 2020, https://doi.org/10.3390/app12042115