• Title/Summary/Keyword: Ramanujan summation formula

Search Result 3, Processing Time 0.022 seconds

GENERALIZATIONS OF CERTAIN SUMMATION FORMULA DUE TO RAMANUJAN

  • Song, Hyeong-Kee;Kim, Yong-Sup
    • Honam Mathematical Journal
    • /
    • v.34 no.1
    • /
    • pp.35-44
    • /
    • 2012
  • Motivated by the extension of classical Dixon's summation theorem for the series $_3F_2$ given by Lavoie, Grondin, Rathie and Arora, the authors aim at deriving four generalized summation formulas, which, upon specializing their parameters, give many summation identities including, especially, the four very interesting summation formulas due to Ramanujan.

ANOTHER GENERALIZATION OF A RAMANUJAN SUMMATION

  • Lee, Seung Woo;Lee, Chang Hyun;Kim, Yong Sup
    • Honam Mathematical Journal
    • /
    • v.35 no.1
    • /
    • pp.83-92
    • /
    • 2013
  • The aim of this research paper is to provide certain generalizations of two well-known summations due to Ramanujan. The results are derived with the help of the generalized Dixon's theorem on the sum of $_3F_2$ and the generalized Kummer's theorem for $_2F_1$ obtained earlier by Lavoie et al. [3, 5]. As their special cases, we have obtained fifteen interesting summations which are closely related to Ramanujan's summation.

PARTIAL SECOND ORDER MOCK THETA FUNCTIONS, THEIR EXPANSIONS AND PADE APPROXIMANTS

  • Srivastava, Bhaskar
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.767-777
    • /
    • 2007
  • By proving a summation formula, we enumerate the expansions for the mock theta functions of order 2 in terms of partial mock theta functions of order 2, 3 and 6. We show a relation between Ramanujan's ${\mu}(q)$-function and his sixth order mock theta functions. In addition, we also give the continued fraction representation for ${\mu}(q)$ and 2nd order mock theta functions and $Pad\acute{e}$ approximants.