• Title/Summary/Keyword: Ramal bone graft

Search Result 8, Processing Time 0.026 seconds

A Simple Surgical Guide for Horizontal Bone Graft: A Technical Note

  • Ahn, Kang-Min
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.2
    • /
    • pp.90-92
    • /
    • 2016
  • Horizontal bone defect in the anterior maxilla makes it difficult to place dental implant. The golden standard for bone augmentation is autogenous block bone graft. Tight contact with recipient site and rigid fixation are two key factors for successful block bone graft. Ramal bone graft has been the most reliable methods for dental implant field. However, the curvature of the alveolar ridge is different from ramal bone shape. Intraoperative trimming of ramal bone is cumbersome for surgeon. In this technical note, a simple way to design the ramal bone harvest using bone wax stent is reviewed.

SINUS GRAFT AND VERTICAL AUGMENTATION OF MAXILLARY POSTERIOR ALVEOLAR RIDGE USING MANDIBULAR RAMAL BLOCK BONE GRAFT (상악동 골이식술과 하악지 자가골 블록을 이용한 상악 구치부 치조제 수직증강술)

  • Kim, Kyoung-Won;Lee, Eun-Young
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.3
    • /
    • pp.276-281
    • /
    • 2010
  • The maxillary posterior area is the most challenging site for the dental implant. After missing of teeth on maxillary posterior area due to periodontal problems, the remaining alveolar ridge is usually very thin because of not only pneumatization of maxillary sinus but also destruction of alveolar bone. The maxillary sinus bone graft procedure is one of the most predictable and successful treatments for the rehabilitation of atrophic and pneumatized endentulous posterior maxilla. But, in case of severe destruction of alveolar bone due to periodontal problems, very long crown length is still remaining problem after successful sinus graft procedures. We performed vertical augmentation of maxillary posterior alveolar ridge using mandibular ramal block bone graft with simultaneous sinus graft. After this procedures, we could get more favorable crown-implant ratio of final prosthodontic appliance and more satisfactory results on biomechanics. This is a preliminary report of the vertical augmentation of maxillary posterior alveolar ridge using mandibular ramal block bone graft with simultaneous sinus graft, so requires more long-term follow up and further studies.

MAXILLARY SINUS BONE GRAFT USING PARTICULATED RAMAL AUTOBONE AND BOVINE BONE (하악지 분쇄자가골과 이종골을 이용한 상악동 골이식술)

  • Kim, Kyoung-Won;Lee, Eun-Young
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.3
    • /
    • pp.254-261
    • /
    • 2009
  • The maxillary sinus bone graft procedure is one of the predictable and successful treatments for the rehabilitation of atrophic and pneumatized edentulous posterior maxilla. Materials used for maxillary sinus floor augmentation include autogenous bone, allogenic bone, xenogenic bone and alloplastic materials. Among them, autogenous bone grafts still represents 'gold standard'for bone augmentation procedures. We selected the mandibular ramus area as a donor site for the autogenous bone graft because of low donor site morbidity. We performed maxillary sinus bone graft procedures with implant placement using particulated ramal autobone and bovine bone mixture, and got good results. This is a preliminary report of the maxillary sinus bone graft using particulated ramal autobone and bovine bone, requires more long-term follow up and further studies.

Retrospective Study of Bone Resorption after Maxillary Sinus Bone Graft

  • Moon, Ji-A;Cho, Min-Sung;Jung, Seung-Gon;Kook, Min-Suk;Park, Hong-Ju;Oh, Hee-Kyun
    • Journal of Korean Dental Science
    • /
    • v.4 no.2
    • /
    • pp.59-66
    • /
    • 2011
  • Purpose: This research sought to determine the resorption rate of bone grafted to the maxillary sinus according to the grafted material's type, patient's age, systemic disease, implant size, site of implant placement, and residual ridge height. Materials and Methods: This research targeted 24 patients who had immediate Osstem$^{(R)}$ implant (US Plus$^{(R)}$) placement after bone graft. The panorama was taken before the surgery, after the surgery, and 6 months after the surgery. Vertical height change and resorption rate of the grafted bone were measured with the same X-rays and compared. The influence of the following factors on the grafted bone material's resorption rate was evaluated: grafted material type, patient's age, systemic disease, implant size, site of implant placement, and residual ridge height. Results: Patients in their 40s had $34.0{\pm}21.1%$ resorption rate, which was significantly higher compared to the other age groups (P<0.05). There was no significant relationship between systemic disease and grafted bone resorption. There was no significant relationship between implant size (diameter, length) and grafted bone resorption. There was no significant relationship between the site of implant placement and grafted bone resorption. The ramal bone-grafted site was significantly more resorbed than the ramal bone/Bio-Oss$^{(R)}$-grafted site, maxillary tuberosity bone/Bio-Oss$^{(R)}$-grafted site, and ramal bone/maxillary tuberosity bone/Bio-Oss$^{(R)}$-grafted site (P<0.05). There was no significant difference in the grafted bone resorption rate in the sinus between more than 4 mm and less than 4 mm residual ridge heights. After an average of 6 months, a second surgery was done; given an average follow-up of 1.9 years, the success rate and survival rate of the implant were 96.9% and 98.4%, respectively. Conclusion: These results indicate that the bone resorption rate of grafted bone among patients in their 40s is higher compared to patients in their 50s and over, and that only autogenous bone (ramus) shows higher resorption rate than the mixed graft of autogenous bone and xenogenous graft (Bio-oss) after maxillary sinus graft.

CLINICAL USAGES OF RAMAL AUTOGENOUS BONE GRAFTS IN DENTAL IMPLANT SURGERY (임플란트 식립 수술시 하악지 자가골이식술의 임상적 활용)

  • Kim, Kyoung-Won;Lee, Eun-Young
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.3
    • /
    • pp.266-275
    • /
    • 2008
  • Dental endosseous implants require sufficient alveolar bone volume and quality for complete bone coverage and initial stability. But, atrophy or resorption of alveolar bone height and width according to patient's age and period of tooth loss can prevent ideal implant placement. Bone graft procedure has been proposed before or simultaneously with the placement of dental implants in patients with insufficient alveolar bone volume. While allografts, xenografts, and alloplastic bone grafts have been proposed and studied for alveolar ridge augmentation, the use of autogenous bone grafts represents the 'gold standard' for bone augmentation procedures. Conventional bone grafts are usually harvested from distant sites such as the ilium or ribs. Recently there is a growing use of intraoral bone grafts from intraoral donor sites such as mandibular symphysis, mandibular ramus and maxillary tuberosity. We recommend that the mandibular ramus is a safe autogenous bone graft donor site for bone harvesting with low morbidity. We report various effective autogenous bone graft procedures from mandibular ramus for the implant placement on various atrophic alveolar ridges.

A RETROSPECTIVE STUDY OF THE SURGICAL SUCCESS AND VERTICAL BONE RESORPTION RATE AFTER AUTOGENOUS BLOCK ONLAY GRAFT IN POSTERIOR MAXILLA (상악 구치부에서 자가골편 이식술의 예후와 골 변화량에 관한 후향적 연구)

  • Myoung, Mee-Rang;Kim, Myung-Rae;Kim, Sun-Jong
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.35 no.5
    • /
    • pp.340-345
    • /
    • 2009
  • Purpose: The purpose of this study was to evaluate the surgical success of bone reconstruction of the severely atrophic maxilla using autogenous block bone onlay graft from the ramus and ilium prior to dental implantation. And we measured the amount of vertical height change Material and Methods: 26 partially edentulous patients(32 case) who needed block onlay bone graft before implant placement in posterior maxillary area from 2002 to 2009 were selected for this study. Patients consisted of 20 males & 6 females and the average of their age was 54.2. Patients who were treated with ramal bone were 19 case and patients who were treated with iliac bone were 11 case. Digital panoramic X-ray was taken at the day of surgery, 3 months and 6 months later after the surgery. Vertical height change & resorption rate of grafted bone were measured with the same X-rays and compared Results: Two out of 32 bone grafts had to be removed because of inflamation at the grafts area(97.3%). The mean of radiographic vertical height change(change rate) of post-op. 3 month was 0.54mm(8.5%)and 6 month was 0.99mm(15.9%). Compairing to intraoral donor site(ramus), iliac bone had more vertical height change(1.18mm) at 6 month after surgery. Conclusions: Within the limit of this study, autogenous block onlay grafts can be considered a promising treatment for severely atrophic maxilla.

THE STUDY ON COURSE OF THE INFERIOR ALVEOLAR CANAL IN THE MANDIBULAR RAMUS USING CONEBEAM CT (하악지에서의 하치조신경관 주행에 대한 Conebeam CT를 이용한 연구)

  • Kim, Hyong-Woo;Kwon, Kyung-Hwan;Min, Seung-Ki;Oh, Seung-Hwan;Chee, Young-Deok;Koh, Se-Wook;Lee, Jae-Hwan;Ohn, Byung-Hun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.5
    • /
    • pp.386-393
    • /
    • 2009
  • Objectives: This study was performed to evaluate course of the inferior alveolar canal in the mandibular ramus and to find safety zone when ramal bone is harvested. Patients and Methods: From January, 2009 to February, 2009, the 20 patients who visited in the Department of Oral and Maxillofacial Surgery, Sanbon Dental Hospital. Wonkwang University and the Conebeam CT was taken of various chief complaints, were selected. The patients who had left and right mandibular first molar and incisor missing, jaw fracture and bone pathology were excluded. The R point was defined as the point which occlusal plane was crossed to the mandibular anterior ramus(external oblique ridge). In the cross-sectional coronal and axial views, the inferior alveolar canal position to the R point, buccal bone width(BW), alveolar crest distance(ACD), distance from alveolar crest to occlusal plane(COD) and inferior alveolar canal to sagittal plane(CS) were measured and horizontal distance(HD), vertical distance(VD) and nearest distance(ND) were measured. Results: The inferior alveolar canal is located $6.19{\pm}1.21\;mm$ from the R point. Horizontal distance from the R point were $13.07{\pm}2.45\;mm$, vertical distance from the R point were $14.24{\pm}2.41\;mm$ and nearest distance from the R point were $10.12{\pm}1.76\;mm$. The course of the inferior alveolar canal was positioned within $0.61{\pm}0.68\;mm$. The distance from external buccal bone to the inferior alveolar canal was increased from the R point anteriorly. Conclusions: It is considered that the mandibular ramus from the R point to 10 mm anteriorly can be harvested safely at ramal bone grafting.

Functional and esthetical full mouth rehabilitation with implant supported prostheses: A case report (고정성 임플란트 보철물을 이용한 완전구강회복 증례)

  • Yeon, Jae-Woong;Lim, Young-Jun;Kwon, Ho-Beom;Kim, Myung-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.1
    • /
    • pp.81-85
    • /
    • 2015
  • This report describes the prosthetic treatment of a patient with multiple missing teeth. Installation of five fixtures on maxilla with sinus lift and six fixtures on mandible with ramal bone graft were performed. With implant supported all-ceramic with zirconia core using CAD/CAM technology and porcelain-fused-to-gold prosthesis, treatment with positive outcome which satisfies both functional and esthetical aspect was obtained.