• Title/Summary/Keyword: Rainfall-runoff simulation

Search Result 343, Processing Time 0.026 seconds

A Shipment Estimation of Agricultural Products Based on Garlic Using Tank Model (탱크모형에 의한 농산물의 출하예측 -마늘을 중심으로-)

  • Suh, Kyo;Lee, Jeong-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.2
    • /
    • pp.35-44
    • /
    • 2005
  • While the need for analyzing and interpreting agricultural logistics are becoming more and more prominent with the rapid changes within the agricultural environment, previously mathematical models have been proved to have its limitations due to the unpredictable traits of agriculture itself and finding the adequate simulation model is not easy. Therefore, in this research, the tank model that has been used to analyze the rainfall-runoff in watersheds, was used to develop a logistics model for estimating shipment by agricultural production. The model was certified by wholesale market data of garlic.

A STUDY ON A REGULAR EVALUATION METHODOLOGY OF STREAMFLOW DATA

  • Noh, Jae-Kyoung
    • Water Engineering Research
    • /
    • v.1 no.3
    • /
    • pp.233-242
    • /
    • 2000
  • A system for regularly appraising the reliability of streamflow data, KORSAS (KOwaco's Regular Streamflow Appraising System) was developed on PC based Windows for hydrological specialists and engineers working in the Korea Water Resources Corporation (KOWACO). The reliability of streamflow rates can be evaluated with KORSAS in various as pects according to the evaluation duration and method. The former being selected as short term (event based) or long term(continus based), and the latter being classified into comparison methods of flow measurement, other stations results, and simulation. Rainfall-runoff models can be used together with KORSAS in order to evaluate the reliability of observed flow data by comparing with simulated flow data. The objective of this study is to develop a systematic methodology in various aspects to evaluate the reliability of streamflow data regularly.

  • PDF

Simulation of Daily Reservoir Inflow using Objective Function Based on Storage Error (저수량 오차를 목적함수로 한 저수지 일 유입량 모의)

  • 노재경
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.4
    • /
    • pp.76-86
    • /
    • 2000
  • The objective function of reservoir storage error was suggested to simulate daily reservoir inflow. DAWAST model, UMAX, LMAX, FC,CP, CE were calibrated. Daily reservoir inflow was imulated with calibrated parameters and reservoir storage was simulated on a daily basis. The simulated results were compared with the monthly results by Gajiyama equation and ten-day results by Tank rainfall-runoff model through equal value lines and hydrographs . DAWAST model showed the best results compared with Gajiymama equation and Tank model. Especially, DAWAST model showed a good agreement in dry periods. NEW concept using objective function of storage error was believed to be satisfactory and to be applied in estimating reservoir inflow.

  • PDF

Application of TOPMODEL at Artificially Drained Watershed (인공배수유역에서의 TOPMODEL의 적용)

  • Kim, Sang-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.5
    • /
    • pp.539-548
    • /
    • 1997
  • A physically based model for rainfall runoff simulation in agricultural watershed equipped with tile drains is presented. This model is developed from the TOPMODEL which is based on the detailed topographic information provided by Digital Elevation Model (DEM). Nine possible flow generation scenarios in the tile drained basin are suggested and used in the development of the model. The model can identify the portions of the hydrograph resulting from tile flow, subsurface flow and surface flow. The performance of the model is assessed through a calibration and validation process. The results of the analysis show that the model describes the physical system well and provides a better insight into the hillslope hydrology of agricultural watersheds with tile drainage.

  • PDF

Numerical Simulation of the Flood Event Induced Temporally and Spatially Concentrated Rainfall - On August 17, 2017, the Flood Event of Cheonggyecheon (시공간적으로 편중된 강우에 의한 홍수사상 수치모의 - 2017년 8월 17일 청계천 홍수사상을 대상으로)

  • Ahn, Jeonghwan;Jeong, Changsam
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.2
    • /
    • pp.45-52
    • /
    • 2018
  • This study identifies the cause of the accident and presents a new concept for safe urban stream management by numerical simulating the flood event of Cheonggyecheon on August 17, 2017, using rain data measured through a dense weather observation network. In order to simulate water retention in the CSO channel listed as one of the causes of the accident, a reliable urban runoff model(XP-SWMM) was used which can simulate various channel conditions. Rainfall data measured through SK Techx using SK Telecom's cell phone station was used as rain data to simulate the event. The results of numerical simulations show that rainfall measured through AWSs of Korea Meteorological Administration did not cause an accident, but a similar accident occurred under conditions of rainfall measured in SK Techx, which could be estimated more similar to actual phenomena due to high spatial density. This means that the low spatial density rainfall data of AWSs cannot predict the actual phenomenon occurring in Cheonggyecheon and safe river management needs high spatial density weather stations. Also, the results of numerical simulation show that the residual water in the CSO channel directly contributed to the accident.

Development of a Multi-Site Calibration Module of Distributed Model - The Case of GRM - (분포형 모형의 다지점 보정 모듈 개발 - GRM 모형을 중심으로 -)

  • Choi, Yun-Seok;Choi, Cheon-Kyu;Kim, Kyung-Tak
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.103-118
    • /
    • 2012
  • A distributed model can easily obtain discharge at any grids spatially distributed in a watershed. But if there are subwatersheds which have various characteristics in a watershed, it is needed to apply a model calibrated at each subwatershed to obtain reliable simulation results for each subwatershed. In this study, a multi-site calibration module that can calibrate a distributed model at each subwatershed using observed flow data was developed. Methods to select multi-site calibration parameters, to apply subwatershed parameters, and to set subwatershed network information are suggested. Classes to implement multi-site calibration technique are designed and a GUI was developed, and procedures for runoff modelling using subwatershed parameters were established. Multi-site calibration module was applied to Sunsan watershed($977km^2$) of Nakdong river basin. Application results showed that the multi-site calibration technique could be applied effectively to model the calibration for each subwatershed, and the simulation results of subwatershed were improved by the application of multi-site calibration.

Application of Generalized Transmissivity Decreasing Function in TOPMODEL Operation (TOPMODEL 투수량계수 감소함수 일반화과정의 적용에 관한 연구)

  • Jeong, Seon-Hui;Kim, Sang-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.6
    • /
    • pp.637-647
    • /
    • 1999
  • This study investigated the applicability of generalized TOPMODEL approach which introduces the power law of decreasing transimissivity with depth instead of the traditional exponential decreasing function. The 50m digital elevation model(DEM) of Dongkog subwatershed at Wichon Test Watershed was used to perform runoff simulation. Random number generation algorithm was integrated into the calibration process for the reliable of model performance. General power law version of TOPMODEL with exponent 2 and 3 showed higher simulation efficiency than other the approaches. This results from the fact that the power law models with exponent 2 and 3 can represent the soil characteristics of study area better than other models.

  • PDF

Prediction of SWAT Stream Flow Using Only Future Precipitation Data (미래 강수량 자료만을 이용한 SWAT모형의 유출 예측)

  • Lee, Ji Min;Kum, Donghyuk;Kim, Young Sug;Kim, Yun Jung;Kang, Hyunwoo;Jang, Chun Hwa;Lee, Gwan Jae;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.88-96
    • /
    • 2013
  • Much attention has been needed in water resource management at the watershed due to drought and flooding issues caused by climate change in recent years. Increase in air temperature and changes in precipitation patterns due to climate change are affecting hydrologic cycles, such as evaporation and soil moisture. Thus, these phenomena result in increased runoff at the watershed. The Soil and Water Assessment Tool (SWAT) model has been used to evaluate rainfall-runoff at the watershed reflecting effects on hydrology of various weather data such as rainfall, temperature, humidity, solar radiation, wind speed. For bias-correction of RCP data, at least 30 year data are needed. However, for most gaging stations, only precipitation data have been recorded and very little stations have recorded other weather data. In addition, the RCP scenario does not provide all weather data for the SWAT model. In this study, two scenarios were made to evaluate whether it would be possible to estimate streamflow using measured precipitation and long-term average values of other weather data required for running the SWAT. With measured long-term weather data (scenario 1) and with long-term average values of weather data except precipitation (scenario 2), the estimate streamflow values were almost the same with NSE value of 0.99. Increase/decrease by ${\pm}2%$, ${\pm}4%$ in temperature and humidity data did not affect streamflow. Thus, the RCP precipitation data for Hongcheon watershed were bias-corrected with measured long-term precipitation data to evaluate effects of climate change on streamflow. The results revealed that estimated streamflow for 2055s was the greatest among data for 2025s, 2055s, and 2085s. However, estimated streamflow for 2085s decreased by 9%. In addition, streamflow for Spring would be expected to increase compared with current data and streamflow for Summer will be decreased with RCP data. The results obtained in this study indicate that the streamflow could be estimated with long-term precipitation data only and effects of climate change could be evaluated using precipitation data as shown in this study.

Inundating Disaster Assessment in Coastal Areas Using Urban Flood Model (도시홍수모델을 이용한 해안지역의 침수재해평가)

  • Yoo Hwan-Hee;Kim Weon-Seok;Kim Seong-Sam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.3
    • /
    • pp.299-309
    • /
    • 2006
  • In recent years, a large natural disasters have occurred due to worldwide abnormal weather and the amount of damage has been increased more resulting from high density population and a large-sized buildings of the urbanized area. In this study. we estimate the flooded area according to rainfall probability intensify and sea level in Woreong dong, Masan occurred flood damages by typhoon Maemi using SWMM, a dynamic rainfall-runoff simulation model in urban area, and then analyze the damage of flood expected area through connecting with GIS database. In result, we can predict accurately expected area of inundation according to the rainfall intensity and sea level rise through dividing the study area into sub-area and estimating a flooded area and height using SWMM. We provide also the shelter information available for urban planning and flood risk estimation by landuse in expected flood area. Further research for hazard management system construction linked with web or wireless communication technology expects to increase its application.

A Development of Intelligent Pumping Station Operation System Using Deep Reinforcement Learning (심층 강화학습을 이용한 지능형 빗물펌프장 운영 시스템 개발)

  • Kang, Seung-Ho;Park, Jung-Hyun;Joo, Jin-Gul
    • Convergence Security Journal
    • /
    • v.20 no.1
    • /
    • pp.33-40
    • /
    • 2020
  • The rainwater pumping station located near a river prevents river overflow and flood damages by operating several pumps according to the appropriate rules against the reservoir. At the present time, almost all of rainwater pumping stations employ pumping policies based on the simple rules depending only on the water level of reservoir. The ongoing climate change caused by global warming makes it increasingly difficult to predict the amount of rainfall. Therefore, it is difficult to cope with changes in the water level of reservoirs through the simple pumping policy. In this paper, we propose a pump operating method based on deep reinforcement learning which has the ability to select the appropriate number of operating pumps to keep the reservoir to the proper water level using the information of the amount of rainfall, the water volume and current water level of the reservoir. In order to evaluate the performance of the proposed method, the simulations are performed using Storm Water Management Model(SWMM), a dynamic rainfall-runoff-routing simulation model, and the performance of the method is compared with that of a pumping policy being in use in the field.