• Title/Summary/Keyword: Rainfall-runoff curve

Search Result 146, Processing Time 0.022 seconds

Estimation of Runoff Curve Number for Agricultural Reservoir Watershed Using Hydrologic Monitoring and Water Balance Method (수문모니터링과 물수지법을 이용한 농업용 저수지 유역 유출곡선번호 추정)

  • Yoon, Kwang-Sik;Kim, Young-Joo;Yoon, Suk-Gun;Jung, Jae-Woon;Han, Kuk-Heon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.3
    • /
    • pp.59-68
    • /
    • 2005
  • The rainfall-runoff potential of Jangseong reservoir watershed was studied based on SCS (Soil Conservation Service, which is now the NRCS, Natural Resources Conservation Service, USDA) runoff curve number (CN) technique. Precipitation and reservoir operation data had been collected. The rainfall-runoff pairs from the watershed for ten years was estimated using reservoir water balance analysis using reservoir operation records. The maximum retention, S, for each storm event from rainfall-runoff pair was estimated for selected storm events. The estimated S values were arranged in descending order, then its probability distribution was determined as log-normal distribution, and associated CNs were found about probability levels of Pr=0.1, 0.5, and 0.9, respectively. A subwatershed that has the similar portions of land use categories to the whole watershed of Jangseong reservoir was selected and hydrologic monitoring was conducted. CNs for subwatershed were determined using observed data. CNs determined from observed rainfall-runoff data and reservoir water balance analysis were compared to the suggested CNs by the method of SCS-NEH4. The $CN_{II}$ measured and estimated from water balance analysis in this study were 78.0 and 78.1, respectively. However, the $CN_{II}$, which was determined based on hydrologic soil group, land use, was 67.2 indicating that actual runoff potential of Jangseong reservoir watershed is higher than that evaluated by SCS-NEH4 method. The results showed that watershed runoff potential for large scale agricultural reservoirs needs to be examined for efficient management of water resources and flood prevention.

Estimation of Runoff Curve Number for Ungaged Watershed using SWAT Model (SWAT을 이용한 미계측 유역의 유출곡선지수 산정)

  • Lee, Jin-Won;Kim, Nam-Won;Lee, Jeong-Woo;Seo, Byung-Ha
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.11-16
    • /
    • 2009
  • This study is to suggest the SWAT model as inputs for the estimation of CN (Curve number) if we do not have hourly rainfall and runoff data in the ungaged watershed. The daily CNs were estimated by using SWAT model for Chungju dam watershed and the CNs by hourly rainfall and runoff data in the same period with daily CN estimation were also estimated. Then the daily and hourly CNs were compared each other. The CNs by SWAT model were larger than the actual CNs. 7.4% larger in AMC-I, 1.2% in AMC-II, and 6.3% in AMC-III respectively. If we consider various uncertainties in the estimation of CN, the error of 6.8% could be acceptable for the application in the field.

Extension of Rating Curve for High Water Level using Monte Carlo Simulation (MCS를 이용한 고수위 수위-유량관계곡선의 연장에 관한 연구)

  • Moon, Young-Il;Kim, Jong-Suk;Yoon, Sun-Kwon
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.683-686
    • /
    • 2008
  • Flood damage has been increased due to the abnormal climate and extreme rainfall. So, quantitative and qualitative hydrologic data should be improved in oder to enhance accuracy of hydrologic forecast. However, research regarding hydrologic data have not been thorough enough. Therefore, in this study, monte carlo simulation was applied to rainfall runoff model to improve the reliability of runoff analysis and risk analysis. Rainfall-Stage-Discharge curve was developed as a consequence of MCS and it is possible to get correct rating curve for high water level.

  • PDF

Analysis of Stream Discharge Characteristic at Control Point for Runoff Model Application (유출모의를 위한 주요제어지점 유량특성 분석)

  • Lee, Sang-Jin;Lee, Bae-Sung;Ryoo, Kyong-Sik;Hwang, Man-Ha
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.11 s.172
    • /
    • pp.905-914
    • /
    • 2006
  • For an accurate rainfall-runoff simulation in the river basin, not evaluation of runoff model but accurate runoff data are very important. In this study, SSARR model was applied to the Geum River basin and these results are compared with runoff data observed at the Gongju gauging station. The model results didn't good fit the discharge data determined from the rating curve at Gongju gauging station during normal and dry season, especially. For the reliability analysis for the existing rating curve, we observed new stream discharge set from 2003 to 2005. We also estimated long term runoff data from the base flow separation method and defined the hydraulic characteristics. The results show that the new observed stream discharge is similar to the rainfall-runoff model results but existing rating curve seems to be overestimated about 10-20% during normal and dry season. We found that the continuous monitoring and update for the existing rating curve at the gaging station are needed for accurate estimation of runoff data.

Optimal Volume Estimation for Non-point Source Control Retention Considering Spatio-Temporal Variation of Land Surface (지표면의 시공간적 변화를 고려한 비점오염원 저감 저류지 최적용량산정)

  • Choi, Daegyu;Kim, Jin Kwan;Lee, Jae Kwan;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.9-18
    • /
    • 2011
  • In this study the optimal volume for non-point source control retention is estimated considering spatio-temporal variation of land surface. The 3-parameter mixed exponential probability density function is used to represent the statistical properties of rainfall events, and NRCS-CN method is applied as rainfall-runoff transformation. The catchment drainage area is divided into individual $30m{\times}30m$ cells, and runoff curve number is estimated at each cell. Using the derived probability density function theory, the stormwater probability density function at each cell is derived from the rainfall probability density function and NRCS-CN rainfall-runoff transformation. Considering the antecedent soil moisture condition at each cell and the spatial variation of CN value at the whole catchment drainage area, the ensemble stormwater capture curve is established to estimate the optimal volume for an non-point source control retention. The comparison between spatio-temporally varied land surface and constant land surface is presented as a case study for a urban drainage area.

Derivation of Flood Frequency Curve with Uncertainty of Rainfall and Rainfall-Runoff Model (강우 및 강우-유출 모형의 불확실성을 고려한 홍수빈도곡선 유도)

  • Kwon, Hyun-Han;Kim, Jang-Gyeong;Park, Sae-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.1
    • /
    • pp.59-71
    • /
    • 2013
  • The lack of sufficient flood data being kept across Korea has made it difficult to assess reliable estimates of the design flood while relatively sufficient rainfall data are available. In this regard, a rainfall simulation based derivation technique of flood frequency curve has been proposed in some of studies. The main issues in deriving the flood frequency curve is to develop the rainfall simulation model that is able to effectively reproduce extreme rainfall. Also the rainfall-runoff modeling that can convey uncertainties associated with model parameters needs to be developed. This study proposes a systematic approach to fully consider rainfallrunoff related uncertainties by coupling a piecewise Kernel-Pareto based multisite daily rainfall generation model and Bayesian HEC-1 model. The proposed model was applied to generate runoff ensemble at Daechung Dam watershed, and the flood frequency curve was successfully derived. It was confirmed that the proposed model is very promising in estimating design floods given a rigorous comparison with existing approaches.

제주도 하천의 수위-유량 변동특성연구

  • 문덕철;하규철;고기원;박기화
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.422-425
    • /
    • 2004
  • To understand runoff Phenomena in Jeju island, some streams are monitored automatically about stream stage, and water quality in Jeju Provincial Water Resources Management Office. Rating curves for stream discharge are reviewed. Stream stages respond very quick to some rainfall events, and parameters influencing runoff phenomena such as landuse, soil condition, preconditoned rainfall, and vegetables will be studied. A few thousand to ten thousand ml/day are estimated from 6 permanent streams in Jeju island.

  • PDF

Calculation of Runoff in Flood Basin Using GIS (GIS를 활용한 홍수유역의 유출량 산정)

  • 이형석;김인호
    • Spatial Information Research
    • /
    • v.11 no.2
    • /
    • pp.143-153
    • /
    • 2003
  • In order to investigate the effect of a pouring rain that it follows in the typhoon, the effect analysis with actual measurement data of rainfall outflow it follows in flood basin is necessary. Also there is a case that it analyzes with the fact that the rainfall occurs identically in whole basin in case of the rainfall outflow analysis, but the actual rainfall distribution from the basin very will be irregular and the interpretation which it reflects must become accomplished. It created spatial information of terrain, land use and the soil using GIS. It created topographical factor of the subject area and calculated CN(runoff curve number) with WMS(Watershed Modeling System). It calculated runoff using a HEC-1 model and the Rational Method connected at the WMS. By connecting GIS and WMS, it calculated the effect of a pouring rain and runoff from the construction area. Also it will be able to apply with a basic data in more efficient runoff analysis.

  • PDF

Analysis of Rainfall Runoff Delay Effect of Vegetation Unit-type LID System through Rainfall Simulator-based Probable Rainfall Recreation (인공강우기 기반 확률강우재현을 통한 식생유니트형 LID시스템의 우수유출지연 효과분석)

  • Kim, Tae-Han;Park, Jeong-Hyun;Choi, Boo-Hun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.6
    • /
    • pp.115-124
    • /
    • 2019
  • In a climate change environment where heat damage and drought occur during a rainy season such as in 2018, a vegetation-based LID system that enables disaster prevention as well as environment improvement is suggested in lieu of an installation-type LID system that is limited to the prevention of floods. However, the quantification of its performance as against construction cost is limited. This study aims to present an experiment environment and evaluation method on quantitative performance, which is required in order to disseminate the vegetation-based LID system. To this end, a 3rd quartile huff time distribution mass curve was generated for 20-year frequency, 60-minute probable rainfall of 68mm/hr in Cheonan, and effluent was analyzed by recreating artificial rainfall. In order to assess the reliability of the rainfall event simulator, 10 repeat tests were conducted at one-minute intervals for 20 minutes with minimum rainfall intensity of 22.29mm/hr and the maximum rainfall intensity of 140.69mm/hr from the calculated probable rainfall. Effective rainfall as against influent flow was 21.83mm/hr (sd=0.17~1.36, n=20) on average at the minimum rainfall intensity and 142.27mm/hr (sd=1.02~3.25, n=20) on average at the maximum rainfall intensity. In artificial rainfall recreation experiments repeated for three times, the most frequent quartile was found to be the third quartile, which is around 40 minutes after beginning the experiment. The peak flow was observed 70 minutes after beginning the experiment in the experiment zone and after 50 minutes in the control zone. While the control zone recorded the maximum runoff intensity of 2.26mm/min(sd=0.25) 50 minutes after beginning the experiment, the experiment zone recorded the maximum runoff intensity of 0.77mm/min (sd=0.15) 70 minutes after beginning the experiment, which is 20 minutes later than the control zone. Also, the maximum runoff intensity of the experiment zone was 79.6% lower than that of the control zone, which confirmed that vegetation unit-type LID system had rainfall runoff reduction and delay effects. Based on the above findings, the reliability of a lab-level rainfall simulator for monitoring the vegetation-based LID system was reviewed, and maximum runoff intensity reduction and runoff time delay were confirmed. As a result, the study presented a performance evaluation method that can be applied to the pre-design of the vegetation-based LID system for rainfall events on a location before construction.

Assessment of flood runoff using radar rainfall and distributed model (레이더 강우 자료와 분포형 모형을 이용한 홍수 유출량 산정)

  • Kim, Byung-Sik;Hong, Jun-Bum;Kim, Won;Yoon, Seok-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1783-1787
    • /
    • 2007
  • In this paper we applied radar rainfall for assessment that radar can be used for flood forecasting. The radar data observed at Imjin-River radar site was adjusted using conditional merging method to estimate simulated runoff in Anseon-cheon basin. Also we use two dimensional physical and grid based model call $Vflo^{TM}$. As a result we could find simulated hydrologic curve shows good fitting with observed hydrologic curve even parameters of the model were not calibrated. If we calibrate the parameters, we can expect better hydrologic curve. And radar rainfall can be used for water resources fields and flood forecasting in Korea.

  • PDF