• Title/Summary/Keyword: Rainfall runoff reduction

Search Result 184, Processing Time 0.033 seconds

Application of a Distributed Model for Evaluating the Effect of Sacheonman Spillway on the Flood Reduction in the Downstream of Namgang Dam (사천만 방수로가 남강댐 하류의 홍수량 저감에 미치는 영향 평가를 위한 분포형 모형의 적용)

  • Choi, Cheon Kyu;Choi, Yun Seok;Kim, Kyung Tak
    • Journal of Wetlands Research
    • /
    • v.14 no.3
    • /
    • pp.399-411
    • /
    • 2012
  • Namgang Dam is located in the upstream of Nam river. Namgang Dam controls flood for the downstream of Namgang Dam using the Namgang spillway and the Sacheonman spillway with planned discharge. However, it had not been evaluated adequately that the effect of the discharge through Sacheonman spillway on the flood reduction of the downstream of Namgang Dam. This study performs runoff simulation considering the discharge from Namgang Dam and Sacheonman spillway. And modeling results are evaluated for the flood reduction effect of Sacheonman spillway on the downstream of Namgang Dam. This study uses a distributed model, GRM(Grid based Rainfall-runoff Model) for runoff analysis. As a result, Sacheonman spillway is assigned more discharge than Namgang Dam, and Sacheonman spillway greatly affects flood reduction in the downstream of Namgang Dam.

Development and Evaluation of Runoff-Sediment Evaluation System and BMPs Evaluation Modules for Agricultural Fields using Hourly Rainfall (시강우량을 이용한 필지별 유출-유사 평가 시스템 및 BMPs 평가 모듈 개발 및 적용성 평가)

  • Kum, Donghyuk;Ryu, Jichul;Choi, Jaewan;Shin, Min Hwan;Shin, Dong Suk;Cheon, Se Uk;Choi, Joong-Dae;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.375-383
    • /
    • 2012
  • Soil erosion has been emphasized as serious environmental problem affecting water quality in the receiving waterbodies. Recently, Best Management Practices (BMPs) have been applied at a field to reduce soil erosion and its effectiveness in soil erosion reduction has been monitored with various methods. Although monitoring at fields/watershed outlets would be accurate way for these ends, it is not possible at some fields/watersheds due to various limitations in direct monitoring. Thus modeling has been suggested as an alternative way to evaluate effects of the BMPs. Most models, which have been used in evaluating hydrology and water quality at a watershed, could not reflect rainfall intensity in runoff generation and soil erosion processes. In addition, source codes of these models are not always public for modification/enhancement. Thus, runoff-sediment evaluation system using hourly rainfall data and vegetated filter strip (VFS) evaluation module at field level were developed using open source MapWindow GIS component in this study. This evaluation system was applied to Bangdongri, Chuncheonsi to evaluate its prediction ability and VFS module in this study. The NSE and $R^2$ values for runoff estimation were 0.86 and 0.91, respectively, and measured and simulated sediment yield were 15.2 kg and 16.5 kg indicating this system, developed in this study, can be used to simulate runoff and sediment yield with acceptable accuracies. Nine VFS scenarios were evaluated for effectiveness of soil erosion reduction. Reduction efficiency of the VFS was high when sediment inflow was small. As shown in this study, this evaluation system can be used for evaluation BMPs with local rainfall intensity and variations considered with ease-of-use GIS interface.

Development and Evaluation of Bioretention Treating Stormwater Runoff from a Parking Lot (주차장 비점오염원 관리를 위한 식생체류지 개발 및 평가)

  • Yu, Gigyung;Choi, Jiyeon;Hong, Jungsun;Moon, Soyeon;Kim, Lee Hyung
    • Journal of Wetlands Research
    • /
    • v.17 no.3
    • /
    • pp.221-227
    • /
    • 2015
  • Urbanization increases the impervious cover, which affects the discharge of stormwater runoff and non-point source pollutants to the waterbodies. In order to improve the water quality and restore the aqua-ecosystem, the Ministry of Environment (MOE), Korea MOE introduced the Low Impact Development(LID) techniques on development projects. Therefore, research was performed to develop the bioretention technology for managing the stormwater runoff from urban areas. The test-bed was established on 2013 up to evaluate the performance of pollutant and runoff reduction. A total of 11 storm events have been monitored from November 2013 to present. Even though the SA/CA (surface area of bioretention/catchment area) is approximately 2.2%, the facility shows high pollutant and runoff reduction during storm events by increasing retention and infiltration capacities. The bioretention shows a 100% total runoff reduction at 0mm < R < 10mm rainfall range and more than 90% of runoff reduction at a rainfall range of 10mm < R < 20mm. Due to runoff volume reduction, more than 90% of nonpoint source pollutant were also removed by the bioretention.

A Study on the Early-stage Storm Runoff Treatment for the Reduction of Non-point Pollution Materials on the Road (도로상의 비점오염물질 저감을 위한 초기 우수유출수 처리에 관한 연구)

  • Roh, Sung-Duk;Lee, Dae-Keun;Chun, Yang-Kun
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.525-533
    • /
    • 2004
  • The object ofthis study was to test for STORMSYS process that composed Catch Basin and Stormsys(three units: vortex solids separator, filter media bed and vegetated filter strips). It could be applied to treat the first-flush non-point pollution materials on the road(especially, motorway). This study investigated that the runoff characteristics of non-point pollutions containing the heavy metal(Fe, Zn and Cu) by rainfall showed relatively high pollution concentration in the early-stage storm runoff on the road, which seems to be caused by the vehicular traffic, and showed the rapid reduction of pollution concentration on the basis of about 5mm rainfall volume. As the number of the non-rainy days were increased, the pollution concentration by storm runoff was increased, also. As a test result of this process, the average removal efficiency of BOD, $COD_{mn}$, SS, T-N and T-P over the testing period were 92.7%,88.6%,97.4%,93.0% and 93.3%, respectively. Also, the average removal efficiency of n-Hexane, Fe, Zn and Cu were 86.7%, 96.1%, 84.4% and 78.4%, respectively. As shown in the characteristics of storm runoff, the non-point pollution materials have high pollution concentration in the early-stage storm runoff on the road, the installation of STORMSYS process is expected to reduce considerable amount of non-point pollutions.

Analysis on the Effect of Infiltration Collector Well Installation on the Water Control (침투통의 설치에 따른 치수효과 분석)

  • Shim, Jae-hyun;Lee, Cheol-kyu;Lee, Jong-kook;Kim, Jin-young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.298-302
    • /
    • 2004
  • In this study, the runoff reduction effect was analyzed quantitatively focusing on the infiltration collector well located in the test area. On the basis of the analysis of the data obtained by examining the real-time measurement field data, the runoff reduction was examined through the measured rainfall of the year 2003 by applying the analysis result, with the PCSWMM model to the Kiheung-Gugal residential area, which is selected as the test basin. According to the analysis, it is revealed that an infiltration collector well can reduce up to $65\~98\%$ of runoffs, compared to a conventional one. For measured rainfalls, an infiltration collector well was able to reduce up to $15\~23\%$ of runoffs and $3\~25\%$ of peak runoffs. These results show that the effects of infiltration collector wells might vary with rainfall intensity and its duration. However, the infiltration collector well was confirmed as the one of the alternatives of runoff reduction facilities in urbanized catchment.

  • PDF

Characteristics of Changes in Water Quality in the Suyoung River During Rainfall Event (강우 시 수영강 유역의 수질변화 특성)

  • Kim, Suhyun;Kim, Jungsun;Kang, Limseok
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.1
    • /
    • pp.9-18
    • /
    • 2019
  • Recently, it was realized that a significant portion of pollution from urban areas originates from non-point sources such as construction sites, washoff from impervious surfaces, and sewage input from unsewered areas and combined sewer overflows. Especially, Urban stormwater runoff is one of the most extensive cause of the deterioration of the water quality in streams located in urban area. The objective of this study was to investigate runoff characteristics of non-point pollutants source at the urban area in the Suyeong River. Water quality variations were investigated at two points of Suyeong River during a period of 10 rainfall events. Concentration difference of non-point pollution source appeared big by precedent number of days of no rainfall. In addition, Event mean Concentration (EMCs) that well represents runoff characteristics of storm water during rainfall, was calculated, and runoff pollutants loading was also examined. The probability distribution of EMCs of BOD, COD, TOC, T-N, T-P, and TSS were analyzed and the mean values of observed EMC and the median values of estimated EMCs compared through probability distribution. Other objectives of this study were the characterization of discharge from non-point source, the analysis of the pollutant loads and an establishment of a management plan for non-point source of Suyeong River. Also, It was established that the most important thing for the administration of non-point pollution source is to come up with the solution for the reduction of effluent at the beginning.

A Study on the Peak Runoff Reduction Effect of Seolleung·Jeongneung Zone by Applying LID(Low Impact Development) System based on the Landscape Architectural Technology (조경기술기반 LID 시스템 적용을 통한 선릉·정릉 권역의 첨두유출량 분석)

  • Kim, Tae-Han;Choi, Jong-Hee
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.35 no.4
    • /
    • pp.126-133
    • /
    • 2017
  • This study analyzed hydrological changes of stormwater runoff of Seolleung Jeongneung zone according to the application of LID system based on landscape Architectural technology. The results are as follows. First, when flooding occurred in Gwanghwamun in July 27, 2011, the maximum instantaneous rainfall amount was 183 mm/hr recorded at 10:00 on 27th for 10 minutes, and it was confirmed that rainfall intensity more than three times as high as the maximum rainfall of 57.5 mm/hr. Second, it is possible to control peak flow rate in the case of 1,500mm of soil thickness, so that it is possible to improve the vulnerability of flood damage in Seolleung and Jeongneung zone when applying the LID system. Third, in the berm height scenario, peak flow rate control was not controled in all depth level models, but the first stormwater runoff was delayed by 4 hours and 10 minutes compared to the soil thickness scenario. It was interpreted as a relatively important indicator the soil thickness for the initial stromwater runoff reduction and the berm height for the peak runoff. Through this, the systematic adaptation of landscape-friendly ecological factors within the cultural property protection zone could theoretically confirm the effects of flood disaster prevention.

A Case Study of Extensive Green Roof System for Tropical Climate in Malaysia

  • Kok, Kah Hoong;Jung, Kwansue;Sidek, Lariyah Mohd;Abidin, Mohd Roseli Zainal;Felix, Micah Lourdes
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.329-329
    • /
    • 2016
  • Rapid urbanization has taken environmental toll on the surrounding which can be witnessed by the advent of global warming and climate change. Driven by environmental needs, Green Building Index (GBI) was established in Malaysia to drive initiative to lead the property industry towards becoming more environmental friendly. Green roofs (roof with vegetated cover) as one of the assessment criteria of GBI, are gaining attention in the Malaysian society as a versatile new environmental friendly mitigation technology. This paper evaluates the qualitative and quantitative performances of an extensive green roof at Humid Tropics Centre under local tropical climate. Simulations showed that the extensive green roof system could reduce the peak discharge up to 26% in relation to impervious brown roof. Its reduction ability decreased for storms with intense rainfall. Increment of pH was observed for the green roof runoff and the runoff water quality ranged between class I and II under Water Quality Index (WQI). High concentrations of phosphate were noticed in the runoff samples and substrates (fertilized planting soil) might be the potential contributor. Findings indicate that there was a reduction of around $1.5^{\circ}C$ for indoor temperature of the building after installation of the extensive green roof.

  • PDF

The Improvement on the Empirical Formula of Stormwater Captured Ratio for Water Quality Volume Based Non-Point Pollutants Water Quality Control Basins (WQV 기반 비점오염저감시설의 강우유출수 처리비 경험공식의 개선)

  • Choi, Daegyu;Park, Moo Jong;Park, Bae Kyung;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.1
    • /
    • pp.87-94
    • /
    • 2014
  • According to the technical guideline of water pollutant load management, the rainfall captured ratio which can be estimated by the empirical formula is an important element to estimate reduction loads of non-point pollutants water quality control basin. In this study, the rainfall captured ratio is altered to stormwater captured ratio considering its meaning in the technical guideline of water pollutant load management, and the new empircal formula of stormwater captured ratio is suggested. In order to do this, we calculate stormwater captured ratio by using the hourly rainfall data of seven urban weather stations (Busan, Daegu, Daejeon, Gangreung, Seoul, Gwangju, and Jeju) for 43 years. The regression coefficients of the existed empirical formula cannot reflect the catchment properties at all, because they are fixed values regardless of regions. However the empirical formula of stormwater captured ratio has flexible regression coefficients by runoff coefficient(C), so it is allowed to consider the characteristics of runoff in catchment. It is expected that reduction loads of storage based water quality control basin can be more reasonably estimated than before.

Evaluations of NPS Reduction using the Rice Straw Mats and Soil Amendments from Steep Sloped Field (볏짚거적과 토양개량제를 활용한 경사지 밭의 비점오염원 저감평가)

  • Won, Chul-Hee;Shin, Min-Hwan;Choi, Yong-Hun;Shin, Jae-Young;Park, Woon-Ji;Lee, Su-In;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.2
    • /
    • pp.29-36
    • /
    • 2013
  • The objective of the research was to describe the effect of straw mat cover and soil amendments on the reduction of runoff and non-point source load from steep sloped highland agricultural fields. Four $5{\times}30$ m plots on sandy loam soil with 28 % slope were prepared. Experimental treatments were bare (control), rice straw mat cover (3,000 kg/ha) (S), PAM (5 kg/ha)+Gypsum (1 ton/ha) (PG) and rice straw mat cover+PAM+Gypsum (SPG). A variety of lettuce was cultivated and runoff was monitored during a growing season in 2011. Natural monitoring was conducted to three times. Runoff rate of S, PG and SPG plots were significantly lower than those of control plot. Especially, the runoff rate is zero in SPG plot at a first rainfall events. The reduction rate of runoff from the S, PG and SPG plots was 30.8 %, 29.0 % and 81.8 % compared to control plots, respectively. The reduction rate of NPS pollution load of S, PG and SPG was ranged of 50~90 %, 30~70 % and 90~100 %, respectively. Yield of lettuce from S, PG and SPG plots was respectively 400 (567 kg/ha), 320 (453 kg/ha) and 760 (1,067 kg/ha) that of compared to control plots greater than that from control plots (140 kg/ha). We speculated that the experimental treated plots could hold more nutrients and moisture than the control and helped the crop grow healthier. When analyzing the above results, in terms of reduction of runoff and NPS pollution load and crop yields, SPG experimental treatment had the best effect. It was concluded that the use of rice straw mats cover and soil amendments on soil surface could not only reduce the NPS pollution loads in receiving waters but also help increase the crop yield.