• 제목/요약/키워드: Rainfall range

검색결과 404건 처리시간 0.027초

도시유역 CSOs 처리를 위한 저류형시스템 설계용량 산정 (Estimation of Storage Capacity for CSOs Storage System in Urban Area)

  • 조덕준;이정호;김명수;김중훈;박무종
    • 한국물환경학회지
    • /
    • 제23권4호
    • /
    • pp.490-497
    • /
    • 2007
  • A Combined sewer overflows (CSOs) are themselves a significant source of water pollution. Therefore, the control of urban drainage for CSOs reduction and receiving water quality protection is needed. Examples in combined sewer systems include downstream storage facilities that detain runoff during periods of high flow and allow the detained water to be conveyed by an interceptor sewer to a centralized treatment plant during periods of low flow. The design of such facilities as stormwater detention storage is highly dependant on the temporal variability of storage capacity available (which is influenced by the duration of interevent dry periods) as well as the infiltration capacity of soil and recovery of depression storage. As a result, a continuous approach is required to adequately size such facilities. This study for the continuous long-term analysis of urban drainage system used analytical probabilistic model based on derived probability distribution theory. As an alternative to the modeling of urban drainage system for planning or screening level analysis of runoff control alternatives, this model have evolved that offer much ease and flexibility in terms of computation while considering long-term meteorology. This study presented rainfall and runoff characteristics of the subject area using analytical probabilistic model. This study presented the average annual COSs and number of COSs when the interceptor capacity is in the range $3{\times}DWF$ (dry weather flow). Also, calculated the average annual mass of pollutant lost in CSOs using Event Mean Concentration. Finally, this study presented a decision of storage volume for CSOs reduction and water quality protection.

Incipient motion criteria of uniform gravel bed under falling spheres in open channel flow

  • Khe, Sok An;Park, Sang Deog;Jeon, Woo Sung
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.149-149
    • /
    • 2018
  • Prediction on initial motion of sediment is crucial to evaluate sediment transport and channel stability. The condition of incipient movement of sediment is characterized by bed shear stress, which is generated from force of moving water against the bed of the channel, and by critical shear stress, which depends on force resisting motion of sediment due to the submerged weight of the grains. When the bed shear stress exceeds the critical shear stress, sediment particles begin rolling and sliding at isolated and random locations. In Mountain River, debris flow frequently occurs due to heavy rainfall and can lead some natural stones from mountain slope into the bed river. This phenomenon could add additional forces to sediment transport system in the bed of river and also affect or change direction and magnitude of sediment movement. In this paper, evaluations on incipient motion of uniform coarse gravel under falling spheres impacts using small scale flume channel were conducted. The drag force of falling spheres due to water flow and length movement of falling spheres were investigated. The experiments were carried out in flume channel made by glass wall and steel floor with 12 m long, 0.6 m wide, and 0.6 m deep. The bed slopes were selected with the range from 0.7% to 1.5%. The thickness of granular layer was at least 3 times of diameter of granular particle to meet grain placement condition. The sphere diameters were chosen to be 4cm, 6 cm, 8 cm, 10 cm. The spheres were fallen in to the bed channel for critical condition and under critical condition of motion particle. Based on the experimental results, the Shields curve of particles Reynold number and dimensionless critical shear stress were plotted. The relationship between with drag force and the length movement of spheres were plotted. The pathways of the bed material Under the impact of spheres falling were analyzed.

  • PDF

Creager 기법을 이용한 지속시간별 가능최대홍수량 산정 (Estimation of Probable Maximum Flood by Duration using Creager Method)

  • 강부식;류승엽
    • 한국방재학회 논문집
    • /
    • 제11권1호
    • /
    • pp.77-84
    • /
    • 2011
  • 각종 수공구조물 설계를 위한 첨두홍수량을 추정시 합리식(rational formula) 및 가지야마(Kajiyama)공식 등을 사용하고 있으나, 이러한 방법들을 이용하여 가능최대홍수량(PMF)을 산정하기 위해서는 가능최대강수량(PMP)의 추정이 선행되어야 하므로 미계측지역에서는 적용에 상당한 제약이 따른다. Creager 등이 1945년에 제시한 Creager방법은 비홍수량산정기법의 일종으로 유역면적과 PMF사이의 비선형성을 직접 수식화하여 제공하므로 PMP값이 주어지지 않은 상황에서 PMF산정이 가능하며, 주로 중규모이상 다목적댐의 PMF 산정시 사용되어 왔는데, 국내에는 아직 적용된 사례가 많지 않다. 본 연구에서는 PMP도를 이용한 강우-유출 모델로 산정된 상수전용댐과 다목적댐의 PMF를 이용하여 유역규모와 강우지속시간에 따라 보편적으로 적용할 수 있는 Creager 공식의 매개변수와 Creager 계수값의 결정범위 및 기준 등을 산정하여 국내 유역에 적용가능한 방법을 제시하였다.

기후변화 시나리오에 따른 소규모 저수지의 홍수 취약성 평가 - 경기도 내 저수지를 중심으로 - (Assessment of Flood Vulnerability for Small Reservoir according to Climate Change Scenario - Reservoir in Gyeonggi-do -)

  • 허준;봉태호;김성필;전상민
    • 한국농공학회논문집
    • /
    • 제64권5호
    • /
    • pp.53-65
    • /
    • 2022
  • Most of the reservoirs managed by the city and county are small and it is difficult to respond to climate change because the drainage area is small and the inflow increases rapidly when a heavy rain occurs. In this study, the current status of reservoirs managed by city and county in Gyeonggi-do was reviewed and flood vulnerability due to climate change was analyzed. In order to analyze the impact of climate change, CMIP6-based future climate scenario provided by IPCC was used, and future rainfall data was established through downscaling of climate scenario (SSP8-8.5). The flood vulnerability of reservoirs due to climate change was evaluated using the concept provided by the IPCC. The future annual precipitation at six weather stations appeared a gradual increase and the fluctuation range of the annual precipitation was also found to increase. As a result of calculating the flood vulnerability index, it was analyzed that the flood vulnerability was the largest in the 2055s period and the lowest in the 2025s period. In the past period (2000s), the number of D and E grade reservoirs was 58, but it was found to increase to 107 in the 2055s period. In 2085s, there were 17 E grade reservoirs, which was more than in the past. Therefore, it is necessary to take measures against the increasing risk of flooding in the future.

논 물꼬관리 기법 적용에 따른 원단위 삭감부하량 산정식 평가 (Assessing the Unit Load Reduction Equation of Drainage Outlet Raising Management in Paddy Fields)

  • 김동현;오흥근;장태일;함종화
    • 한국농공학회논문집
    • /
    • 제65권2호
    • /
    • pp.35-45
    • /
    • 2023
  • The DOR (Drainage outlet raising) in the paddy field has been suggested as one of the most important best management practices for the TMDL (Total maximum daily load) management in the technical guidelines by the NIER (National institute of environmental research). However, this method is underestimated and is not well adopted by local governments for the TMDL. The purpose of this study is to evaluate the unit load reduction equation according to the application of DOR in order to expand this equation. The original equation in the guideline was derived using the HSPF (Hydrological Simulation Program-Fortran) model for 1 year in Changnyeong. We analyzed the reduction effect of the original equation application by collecting additional long-term monitoring data from the Buan, Icheon, Iksan, and Jeonju. When comparing the reduction loads between the original equation and monitoring results, the evaluation results of the original equation were 11% of the monitoring analysis results, which was underestimated. This means that the original equation needs to be improved. For assessing the equation, the HSPF Paddy-RCH model was established according to the NI ER guideline and evaluated for applicability. The performance results of the model showed a reasonable range by the statistical criteria. Modified equations 1 and 2 were proposed based on the monitoring and modeling results. Modified equation 1 was the method of modifying the original equation's main factors, and modified equation 2 was the method of applying the non-point pollution reduction efficiency according to the rainfall class using the long-term modeling results. At the level of 58.6~64.6% of monitoring data, the difference between them could be further reduced compared to the original equation. The suggested approach will be more reasonable and practicable for decision-makers and will contribute to the TMDL management plans.

A study of characteristics of cumulative deposition of fallout Pu in environmental samples

  • Lee, Myung Ho;Song, Byoung Chul;Jee, Kwang Yong;Park, Yeong Jae;Kim, Won Ho
    • 분석과학
    • /
    • 제19권1호
    • /
    • pp.18-30
    • /
    • 2006
  • This paper describes the cumulative deposition of fallout Pu in soil and lichen at the present time and give the characteristics of fallout Pu deposits in the soil. In the soil of the forest, the accumulated depositions of $^{239,240}Pu$ were estimated to be in the range of 34.0 to $101.2Bq\;m^{-2}$ with an average value of $65.3{\pm}21.6Bq\;m^{-2}$. The average inventory of $^{239,240}Pu$ in the forest was calculated to be two times higher than that in the hill. Also, the deposited activities of $^{239,240}Pu$ in cultivated soil were significantly lower than those in the hill or forest. However, the cumulative depositions of fallout Pu in the volcanic ash soil on Cheju Island were much higher than those in the forest and hill soils. The measured activity concentrations of Pu isotopes in lichens and mosses showed large variations, due to characteristics of species and life span of lichen and moss colonies. From depth profiles, it was found that most of the fallout Pu has been accumulated in upper 10 cm layer of soil. Except for a few cases, the concentrations of $^{239,240}Pu$ in soil tended to decrease exponentially with increasing soil depth. Among parameters affecting the cumulative deposition of fallout Pu, organic substances and rainfall play an important role in the retention and relative mobility of fallout Pu in the soil. However, pH showed a weak correlation with the deposition of fallout Pu in the soil. From sequential leaching experiments, Pu was found to be associated predominantly with the "organic" and "oxy-hydroxy" fractions. Both the activity ratios of $^{238}Pu/^{239,240}Pu$ and $^{241}Pu/^{239,240}Pu$ in soils, lichens and mosses and the atomic ratios of $^{240}Pu/^{239}Pu$ in soils are close to those observed in the cumulative deposit global fallout from nuclear weapon testings. The results obtained from this research make it possible to interpret and predict the behavior of fallout Pu under natural conditions.

Landslide risk zoning using support vector machine algorithm

  • Vahed Ghiasi;Nur Irfah Mohd Pauzi;Shahab Karimi;Mahyar Yousefi
    • Geomechanics and Engineering
    • /
    • 제34권3호
    • /
    • pp.267-284
    • /
    • 2023
  • Landslides are one of the most dangerous phenomena and natural disasters. Landslides cause many human and financial losses in most parts of the world, especially in mountainous areas. Due to the climatic conditions and topography, people in the northern and western regions of Iran live with the risk of landslides. One of the measures that can effectively reduce the possible risks of landslides and their crisis management is to identify potential areas prone to landslides through multi-criteria modeling approach. This research aims to model landslide potential area in the Oshvand watershed using a support vector machine algorithm. For this purpose, evidence maps of seven effective factors in the occurrence of landslides namely slope, slope direction, height, distance from the fault, the density of waterways, rainfall, and geology, were prepared. The maps were generated and weighted using the continuous fuzzification method and logistic functions, resulting values in zero and one range as weights. The weighted maps were then combined using the support vector machine algorithm. For the training and testing of the machine, 81 slippery ground points and 81 non-sliding points were used. Modeling procedure was done using four linear, polynomial, Gaussian, and sigmoid kernels. The efficiency of each model was compared using the area under the receiver operating characteristic curve; the root means square error, and the correlation coefficient . Finally, the landslide potential model that was obtained using Gaussian's kernel was selected as the best one for susceptibility of landslides in the Oshvand watershed.

SSP 시나리오에 따른 CMIP6 GCM 기반 미래 극한 가뭄 전망 (Projected Future Extreme Droughts Based on CMIP6 GCMs under SSP Scenarios)

  • 김송현;남원호;전민기;홍은미;오찬성
    • 한국농공학회논문집
    • /
    • 제66권4호
    • /
    • pp.1-15
    • /
    • 2024
  • In recent years, climate change has been responsible for unusual weather patterns on a global scale. Droughts, natural disasters triggered by insufficient rainfall, can inflict significant social and economic consequences on the entire agricultural sector due to their widespread occurrence and the challenge in accurately predicting their onset. The frequency of drought occurrences in South Korea has been rapidly increasing since 2000, with notably severe droughts hitting regions such as Incheon, Gyeonggi, Gangwon, Chungbuk, and Gyeongbuk in 2015, resulting in significant agricultural and social damage. To prepare for future drought occurrences resulting from climate change, it is essential to develop long-term drought predictions and implement corresponding measures for areas prone to drought. The Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report outlines a climate change scenario under the Shared Socioeconomic Pathways (SSPs), which integrates projected future socio-economic changes and climate change mitigation efforts derived from the Coupled Model Intercomparison Project 6 (CMIP6). SSPs encompass a range of factors including demographics, economic development, ecosystems, institutions, technological advancements, and policy frameworks. In this study, various drought indices were calculated using SSP scenarios derived from 18 CMIP6 global climate models. The SSP5-8.5 scenario was employed as the climate change scenario, and meteorological drought indices such as the Standardized Precipitation Index (SPI), Self-Calibrating Effective Drought Index (scEDI), and Standardized Precipitation Evapotranspiration Index (SPEI) were utilized to analyze the prediction and variability of future drought occurrences in South Korea.

토양수분 데이터의 거동 및 품질 평가: 용담시험유역 사례연구 (Evaluation of the behavior and quality in soil moisture data: A case study of Yongdam study watershed)

  • 이슬찬;백종진;최민하;조영현
    • 한국수자원학회논문집
    • /
    • 제52권12호
    • /
    • pp.951-962
    • /
    • 2019
  • 최근 수문 순환 및 자연재해 관련 연구에 기초자료로 활용될 수 있도록 일관성과 정확성이 높은 토양수분 자료 생산의 필요성이 대두되고 있으나, 국내에서는 토양수분 데이터의 품질관리 기법 등 신뢰도를 확보할 수 있는 연구 개발이 부족한 실정이다. 이에 본 연구에서는 국내 UNESCO-IHP 대표 시험유역인 용담댐 유역의 토양수분 관측소 6개 지점을 대상으로 토양수분의 거동을 분석하고 International Soil Moisture Network(ISMN)의 품질관리 기법을 적용하여 토양수분 데이터의 품질을 향상시킬 수 있는 방향을 제시하고자 하였다. 거동 분석 결과 두 관측소의 경우(i.e., 부귀, 안천 관측소)를 제외한 모든 관측소에서 정상적인 토양수분 거동 형태를 보이는 것을 확인할 수 있었다. 품질관리 기법을 적용한 결과, 상 범주에 해당되는 관측 값은 없었고, 토양수분의 동결이 일어나는 경우도 일반적인 범위(~20%) 내에서 나타나는 것을 확인하였다. 선행 강우 없이 토양수분이 증가하는 경우 또한 ~4% 이내로 나타났으며, spike의 경우 0.01%, plateau의 경우 ~5% 수준으로 선별되어 매우 양호한 결과를 확인할 수 있었다. 추후 관측소별 토양 특성이 고려된 Site-specific한 품질관리 기준이 마련된다면, 보다 신뢰도 높은 토양수분 기초자료의 생산을 가능케 할 것으로 기대된다.

식재지별 외생균근성 버섯의 다양성 및 발생 빈도 비교 (Diversity and Occurrence Frequency of Ectomycorrhizal Fruiting Bodies by Planting Sites)

  • 정진철;오광인;장석기;장규관
    • 한국균학회지
    • /
    • 제32권2호
    • /
    • pp.71-78
    • /
    • 2004
  • 2000년 6월부터 2001년 10월까지 식재지별로 외생균근성 버섯을 조사한 결과는 다음과 같았다. 조사기간 동안 총 3강 3아강 8목 22과 41속 72종 (2변종 포함)의 버섯이 조사되었다. 버섯은 주름버섯목에 9과 21속 48종, 민주름버섯목에 5과 11속 13종, 이형담자균강에 3과 3속 4종, 복균아강에 5과 6속 7종이었다. 외생균근성 버섯은 총 7과 11곡 30종 2,451개체가 조사되었다. 버섯 개체수는 색시졸각버섯(1,225) 긴골광대버섯아재비(179), 자주졸각버섯(130)의 순으로 조사되었다. 외생균근성 버섯 발생은 기후환경요인과 밀접한 관계가 있는 7월과 8월에 집중하였다. 외생균근성 버섯의 종수 및 개체수 분포는 조사구별로 큰 차이가 있었으며, 이는 각 조사구별 입지환경 및 기주 수종 구성 등의 차이 때문인 것으로 사료되었다. 색시졸각버섯은 참나무속에서만 발생하여 기주선택성이 매우 좁고, 긴골광대버섯아재비, 수원무당버섯, 땀버섯속은 침엽수 및 활엽수 모두에서 버섯이 발생되어 기주선택성이 넓은 것으로 나타났다. 외생균근성 버섯의 분포에 영향을 주는 환경은 토양환경 중 토양 pH, 유기물함량 및 전질소함량과 기후환경인 상대습도가 중요한 인자로 나타났다.