DOI QR코드

DOI QR Code

Evaluation of the behavior and quality in soil moisture data: A case study of Yongdam study watershed

토양수분 데이터의 거동 및 품질 평가: 용담시험유역 사례연구

  • Lee, Seulchan (Department of Water Resources, Sungkyunkwan University) ;
  • Baik, Jongjin (Center for Built Environment, Sungkyunkwan University) ;
  • Choi, Minha (Department of Water Resources, Sungkyunkwan University) ;
  • Cho, Younghyun (Water Resources Research Center, K-water Research Institute)
  • 이슬찬 (성균관대학교 수자원학과) ;
  • 백종진 (성균관대학교 에코-스마트 WaterNEXUS 창의인재양성사업팀) ;
  • 최민하 (성균관대학교 수자원학과) ;
  • 조영현 (K-water연구원 물순환연구소)
  • Received : 2019.10.07
  • Accepted : 2019.11.15
  • Published : 2019.12.31

Abstract

Producing consistent, accurate soil moisture data to be utilized as a reference dataset for researches related to hydrological cycle and natural disaster is being critical, but such techniques (e.g. quality control) are still limited to improve reliability of soil moisture data. In this study, analyses of soil moisture's behavior and quality control based on International Soil Moisture Network's (ISMN's) criteria were carried out in Yongdam study watershed, which is UNESCO-IHP' representative examination area in South Korea, to suggest a direction to improve the quality of soil moisture data. The results of the behavior analysis showed normal increasing/decreasing patterns following precipitation events in all stations except two (i.e. Bugui, Ancheon). As a result of applying quality flagging technique, there were no observation recordings in abnormal range, and freezing of soil moisture occurred within general range (~20%). Soil moisture rise without prior rainfall appeared about 4% and there were less than 0.01% for spike and 5% for plateau. Producing more reliable reference data will be possible if site-specific criteria for quality control are considered enough in the future.

최근 수문 순환 및 자연재해 관련 연구에 기초자료로 활용될 수 있도록 일관성과 정확성이 높은 토양수분 자료 생산의 필요성이 대두되고 있으나, 국내에서는 토양수분 데이터의 품질관리 기법 등 신뢰도를 확보할 수 있는 연구 개발이 부족한 실정이다. 이에 본 연구에서는 국내 UNESCO-IHP 대표 시험유역인 용담댐 유역의 토양수분 관측소 6개 지점을 대상으로 토양수분의 거동을 분석하고 International Soil Moisture Network(ISMN)의 품질관리 기법을 적용하여 토양수분 데이터의 품질을 향상시킬 수 있는 방향을 제시하고자 하였다. 거동 분석 결과 두 관측소의 경우(i.e., 부귀, 안천 관측소)를 제외한 모든 관측소에서 정상적인 토양수분 거동 형태를 보이는 것을 확인할 수 있었다. 품질관리 기법을 적용한 결과, 상 범주에 해당되는 관측 값은 없었고, 토양수분의 동결이 일어나는 경우도 일반적인 범위(~20%) 내에서 나타나는 것을 확인하였다. 선행 강우 없이 토양수분이 증가하는 경우 또한 ~4% 이내로 나타났으며, spike의 경우 0.01%, plateau의 경우 ~5% 수준으로 선별되어 매우 양호한 결과를 확인할 수 있었다. 추후 관측소별 토양 특성이 고려된 Site-specific한 품질관리 기준이 마련된다면, 보다 신뢰도 높은 토양수분 기초자료의 생산을 가능케 할 것으로 기대된다.

Keywords

References

  1. Brocca, L., Hasenauer, S., Lacava, T., Melone, F., Moramarco, T., Wagner, W., Dorigo, W., Matgen, P., Martinez-Fernandez, J., Llorens, P., Latron, J., Martin, C., and Bittelli, M. (2011). "Soil moisture estimation through ASCAT and AMSR-E sensors: an intercomparison and validation study across Europe." Remote Sensing of Environment, Elsevier, Vol. 115, No. 12, pp. 3390-3408. https://doi.org/10.1016/j.rse.2011.08.003
  2. Choi, M., and Jacobs, J.M. (2007). "Soil moisture variability of root zone profiles within SMEX02 remote sensing footprints." Advances in Water Resources, Elsevier, Vol. 30, No. 4, pp. 883-896. https://doi.org/10.1016/j.advwatres.2006.07.007
  3. Dorigo, W.A., Wagner, W., Hohensinn, R., Hahn, S., Paulik, C., Xaver, A., Gruber, A., Drusch, M., Mecklenburg, S., van Oevelen, P., Robock, A., and Jackson, T. (2011). "The international soil moisture network: a data hosting facility for global in situ soil moisture measurements." Hydrology and Earth System Sciences, EGU, Vol. 15, No. 5, pp. 1675-1698. https://doi.org/10.5194/hess-15-1675-2011
  4. Dorigo, W.A., Xaver, A., Vreugdenhil, M., Gruber, A., Hegyiova, A., Sanchis-Dufau, A.D., Zamojski, D., Cordes, C., Wagner, W., and Drusch, M. (2013). "Global automated quality control of in situ soil moisture data from the international soil moisture network." Vadose Zone Journal, SSSA, Vol. 12, No. 3.
  5. Hallikainen, M.T., Ulaby, F.T., Dobson, M.C., El-Rayes, M.A., and Wu, L.K. (1985). "Microwave dielectric behavior of wet soil-part 1: empirical models and experimental observations." IEEE Transactions on Geoscience and Remote Sensing, IEEE, Vol. GE-23, No. 1, pp. 25-34. https://doi.org/10.1109/TGRS.1985.289497
  6. Hur, S., Ha, S., and Kim, J. (2009). "Verification of TDR and FDR sensors for volumetric soil water content measurement in sandy loam soil." Korean Journal of Soil Science and Fertilizer, KSSSF, Vol. 42, No. 2, pp. 110-116.
  7. Hur, Y., and Choi, M. (2011). "Advanced microwave scanning radiometer E soil moisture evaluation for haenam flux monitoring network site." Korean Journal of Remote Sensing, KSRS, Vol. 27, No. 2, pp. 131-140. https://doi.org/10.7780/kjrs.2011.27.2.131
  8. Jackson, T.J., Cosh, M.H., Bindlish, R., Starks, P.J., Bosch, D.D., Seyfried, M., and Du, J. (2010). "Validation of advanced microwave scanning radiometer soil moisture products." IEEE Transactions on Geoscience and Remote Sensing, IEEE, Vol. 48, No. 12, pp. 4256-4272. https://doi.org/10.1109/TGRS.2010.2051035
  9. Jeong, J., Cho, S., Baik, J., and Choi, M. (2018). "A study on the establishment of a Korean soil moisture network (2): measurement of intermediate-scale soil moisture using a cosmic- ray sensor." Journal of Korean Society of Hazard Mitigation, KOSHAM, Vol. 18, No. 7, pp. 83-91. https://doi.org/10.9798/kosham.2018.18.7.83
  10. Kim, K., Jeong, S., and Lee, Y. (2019). "A study for establishment of soil moisture station in mountain terrain (1): the representative analysis of soil moisture for construction of cosmic-ray verification system." Journal of Korea Water Resource Association, KWRA, Vol. 52, No. 1, pp. 51-60.
  11. K-water (2013). Report on technical assistance of deokyusan flux tower evapotranspiration estimation and analysis. pp. 1-5.
  12. K-water (2014). Report on soil moisture content of water resources experimental catchment. pp. 1-12.
  13. Lee, Y., Kim, S., Ahn, S., Choi, M., Im, K., and Kim, S. (2015). "Estimation of spatial evapotranspiration using terra MODIS satellite image and SEBAL model-a case of Yongdam dam watershed-." Journal of the Korean Association of Geographic Information Studies, KAGIS, Vol. 18, No. 1, pp. 90-104. https://doi.org/10.11108/kagis.2015.18.1.090
  14. Liu, H.H., and Birkholzer, J. (2012). "On the relationship between water flux and hydraulic gradient for unsaturated and saturated clay." Journal of Hydrology, Elsevier, Vol. 475, pp. 242-247. https://doi.org/10.1016/j.jhydrol.2012.09.057
  15. Logsdon, S.D. (2009). "CS616 calibration: field versus laboratory." Soil Science Society of America Journal, SSSA, Vol. 73, No. 1, pp. 1-6. https://doi.org/10.2136/sssaj2008.0146
  16. Mittelbach, H., Lehner, I., and Seneviratne, S.I. (2012). "Comparison of four soil moisture sensor types under field conditions in Switzerland." Journal of Hydrology, Elsevier, Vol. 430, pp. 39-49. https://doi.org/10.1016/j.jhydrol.2012.01.041
  17. Naveed, M., Moldrup, P., Arthur, E., Wildenschild, D., Eden, M., Lamande, M., and de Jonge, L. W. (2013). "Revealing soil structure and functional macroporosity along a clay gradient using x-ray computed tomography." Soil Science Society of America Journal, SSSA, Vol. 77, No. 2, pp. 403-411. https://doi.org/10.2136/sssaj2012.0134
  18. Nguyen, H.H., Jeong, J., and Choi, M. (2019). "Extension of cosmic-ray neutron probe measurement depth for improving field scale root-zone soil moisture estimation by coupling with representative in-situ sensors." Journal of Hydrology, Elsevier, Vol. 571, pp. 679-696. https://doi.org/10.1016/j.jhydrol.2019.02.018
  19. Rodell, M., Houser, P.R., Jambor, U.E.A., Gottschalck, J., Mitchell, K., Meng, C.J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J.P., Lohmann, D., and Toll, D. (2004). "The global land data assimilation system." Bulletin of the American Meteorological Society, AMS, Vol. 85, No. 3, pp. 381-394. https://doi.org/10.1175/BAMS-85-3-381
  20. Rosenbaum, U., Bogena, H.R., Herbst, M., Huisman, J.A., Peterson, T.J., Weuthen, A., and Vereecken, H. (2012). "Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale." Water Resources Research, AGU, Vol. 48, No. 10.
  21. Scientific, C. (2006). CS616 and CS625 water content reflectometers instruction manual. Campbell Scientific, Logan, UT.
  22. Skierucha, W., and Wilczek, A. (2010). "A FDR sensor for measuring complex soil dielectric permittivity in the 10-500 MHz frequency range." Sensors, MDPI, Vol. 10, No. 4, pp. 3314-3329. https://doi.org/10.3390/s100403314
  23. Tuller, M., and Or, D. (2005). "Water films and scaling of soil characteristic curves at low water contents." Water Resources Research, AGU, Vol. 41, No. 9.
  24. Wagner, W., Bloschl, G., Pampaloni, P., Calvet, J.C., Bizzarri, B., Wigneron, J.P., and Kerr, Y. (2007). "Operational readiness of microwave remote sensing of soil moisture for hydrologic applications." Hydrology Research, IWA, Vol. 38, No. 1, pp. 1-20. https://doi.org/10.2166/nh.2007.029
  25. Western, A.W., Zhou, S.L., Grayson, R.B., McMahon, T.A., Bloschl, G., and Wilson, D.J. (2004). "Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes." Journal of Hydrology, Elsevier, Vol. 286, No. 1-4, pp. 113-134. https://doi.org/10.1016/j.jhydrol.2003.09.014