DOI QR코드

DOI QR Code

A study of characteristics of cumulative deposition of fallout Pu in environmental samples

  • Received : 2005.12.12
  • Accepted : 2006.01.20
  • Published : 2006.02.27

Abstract

This paper describes the cumulative deposition of fallout Pu in soil and lichen at the present time and give the characteristics of fallout Pu deposits in the soil. In the soil of the forest, the accumulated depositions of $^{239,240}Pu$ were estimated to be in the range of 34.0 to $101.2Bq\;m^{-2}$ with an average value of $65.3{\pm}21.6Bq\;m^{-2}$. The average inventory of $^{239,240}Pu$ in the forest was calculated to be two times higher than that in the hill. Also, the deposited activities of $^{239,240}Pu$ in cultivated soil were significantly lower than those in the hill or forest. However, the cumulative depositions of fallout Pu in the volcanic ash soil on Cheju Island were much higher than those in the forest and hill soils. The measured activity concentrations of Pu isotopes in lichens and mosses showed large variations, due to characteristics of species and life span of lichen and moss colonies. From depth profiles, it was found that most of the fallout Pu has been accumulated in upper 10 cm layer of soil. Except for a few cases, the concentrations of $^{239,240}Pu$ in soil tended to decrease exponentially with increasing soil depth. Among parameters affecting the cumulative deposition of fallout Pu, organic substances and rainfall play an important role in the retention and relative mobility of fallout Pu in the soil. However, pH showed a weak correlation with the deposition of fallout Pu in the soil. From sequential leaching experiments, Pu was found to be associated predominantly with the "organic" and "oxy-hydroxy" fractions. Both the activity ratios of $^{238}Pu/^{239,240}Pu$ and $^{241}Pu/^{239,240}Pu$ in soils, lichens and mosses and the atomic ratios of $^{240}Pu/^{239}Pu$ in soils are close to those observed in the cumulative deposit global fallout from nuclear weapon testings. The results obtained from this research make it possible to interpret and predict the behavior of fallout Pu under natural conditions.

Keywords

References

  1. E. Holm and R. B. R. Persson, Health Physics, 29, 43 (1975) https://doi.org/10.1097/00004032-197507000-00005
  2. C. Papastefanou, M. Manolopoulou and T. Sawidis, J. Environ. Radioactivity, 9, 199 (1989) https://doi.org/10.1016/0265-931X(89)90044-1
  3. J. E. Sloof and B. T. Wolterbeek, J. Environ. Radioactivity, 16, 229 (1992)
  4. R. S. Thomas and S. A. Ibrahim, Health Physics, 68, 311 (1995) https://doi.org/10.1097/00004032-199503000-00002
  5. G. Jia, D. Desideri, F. Guerra, M. A. Meli and C. Testa, J. Radioanal. Nucl. Chem. Article, 222, 3 (1997) https://doi.org/10.1007/BF02034237
  6. J. Paatero, T. Jaakkola and S. Kulmala, J. Environ. Radioactivity, 38, 223 (1998) https://doi.org/10.1016/S0265-931X(97)00024-6
  7. R. G. McLaren and D. V. Crawford, J. soil Sci., 24, 172 (1973) https://doi.org/10.1111/j.1365-2389.1973.tb00753.x
  8. K. Lu, I. D. Pulford and H. J. Duncan, Plant and Soil, 59, 317 (1981) https://doi.org/10.1007/BF02184203
  9. H. Schüttelkopf, Development of an analytical procedure for the determination of plutonium in the femtogram-scale and its application to environmental samples (in German), KfK-Report 3035 (1981)
  10. M. H. Lee and M. Pimpl, Appl. Radiat. Isot. 50, 851 (1999) https://doi.org/10.1016/S0969-8043(98)00155-9
  11. M. H. Lee and C. W. Lee, Radiochimica Acta, 84, 177 (1999)
  12. UNSCEAR, Ionizing radiation: sources and biological effects, New York, USA (1982)
  13. M. H. Lee and C. W. Lee, J. Radioanal. Nucl. Chem. Article, 239, 471 (1999) https://doi.org/10.1007/BF02349053
  14. Y. Tuominen and T. Jaakkola, Absorption and accumulation of the mineral elements and radioactive nuclides, In: The Lichens, ed. V. Ahmadjian & M. E. Hale, Academic Press, New York, pp. 185-223 (1973)
  15. K. Ellis and J. N. Smith, J. Environ. Radioactivity, 5, 185 (1987) https://doi.org/10.1016/0265-931X(87)90034-8
  16. S. Mihok, B. Schwartz and A. M. Wiewel, Health Physics, 57, 959 (1989) https://doi.org/10.1097/00004032-198912000-00011
  17. M. Yamamoto, T. Tanii and M Sakanoue, J. Radiat. Res., 22, 134 (1981) https://doi.org/10.1269/jrr.22.134
  18. F. R. Livens and M. S. Baxter, J. Environ. Radioactivity, 7, 75 (1988) https://doi.org/10.1016/0265-931X(88)90043-4
  19. J. J. Alberts, M. A. Wahlgren, K. A. Orlandini and C. A. Durbahn, J. Environ. Radioactivity, 9, 89 (1989) https://doi.org/10.1016/0265-931X(89)90017-9
  20. F. I. Pavlotskaya, Ye.Kazinskaya, E. M. Korobova, B. F. Myasoedov and V. V. Emelyanov, J. Radioanal. Nucl. Chem. Article, 147, 159 (1991) https://doi.org/10.1007/BF02039577
  21. A. Baeza, M. del Rio A. Jimenez, A. Miro and J Paniagua, Radiochimica Acta, 68, 135 (1995)
  22. E. C. Malcolm and L. F. Barry, Health Physics, 46, 65 (1984) https://doi.org/10.1097/00004032-198401000-00004
  23. W. Schimmack, K. Bunzl, K. Kreutzer and R. Schierl, Sci. Total Environ., 101, 181 (1991) https://doi.org/10.1016/0048-9697(91)90108-Q
  24. M. H. Lee, C. W. Lee and B. H. Boo, J. Environ. Radioactivity, 37, 1 (1997) https://doi.org/10.1016/S0265-931X(96)00080-X
  25. M. H. Lee and C. W. Lee, J. Environ. Radioactivity, 47, 253 (2000) https://doi.org/10.1016/S0265-931X(99)00033-8
  26. NEA Group of Experts, The Environmental and Biological Behavior of Plutonium and Some Other Transuranium Elements, OECD Nuclear Energy Agency, pp. 38, Paris (1981)
  27. M. H. Lee, C. W. Lee, K. H. Hong, Y. H. Choi and B. H. Boo, J. Radioanal. Nucl. Chem. Article, 204, 135 (1996) https://doi.org/10.1007/BF02060874
  28. R. N. Murdock, J. D. Johnson, J. D. Hemingway and S. R. Jones, Environ. Sci. Tech., 14, 639 (1993) https://doi.org/10.1080/09593339309385333
  29. R. W. Perkins and C. W. Thomas, World wide fallout. In: Transuranic Elements in the Environment, ed. W. C. Hanson, DOE/TIC-22800, National Technical Information Service, Springfield, VA, p. 53 (1980)
  30. M. Yamamoto, S. Igarashi, K. Chatani, K. Komura and K. Ueno, J. Radioanal. Nucl. Chem. Article, 138, 365 (1990) https://doi.org/10.1007/BF02039859
  31. H. Hötzl, G. Rosner and R. Winkler, Radiochimica Acta, 41, 181 (1987)
  32. J. Paatero and T. Jaakkola, J. Environ. Radioactivity, 64, 139 (1994)
  33. P. W. Krey, E. P. Hardy, C. Pachucki, F. Rourke, J. Coluzza and W. K. Benson, Mass isotopic composition of global fallout plutonium in soil, IAEA-SM-199/39, pp 671-678 (1975)
  34. J. H. Harley, J. Radiat., Res., 21, 83 (1980) https://doi.org/10.1269/jrr.21.83
  35. K. Hirose, J. Radioanal. Nucl. Chem. 197, 331 (1995) https://doi.org/10.1007/BF02036009
  36. M. H. Lee, S. B. Clark, Environ. Sci. Technol., 39, 5512 (2005) https://doi.org/10.1021/es0486115