• 제목/요약/키워드: Rainfall range

Search Result 404, Processing Time 0.026 seconds

Conversion of the Unit of Wootaek Rainfall Data With the Chugugi Data in 「Gaksa-deungnok」 During the Joseon Dynasty (조선시대 각사등록으로부터 복원한 측우기 자료에 의한 우택 강우량 관측자료 단위 환산)

  • Cho, Ha-man;Kim, Sang-won;Chun, Young-sin
    • Atmosphere
    • /
    • v.27 no.2
    • /
    • pp.151-162
    • /
    • 2017
  • The rainfall amount data measured by 'Wootaek', a method of measuring how far the moisture had absorbed into the soil when it rains during the Joseon Dynasty, were estimated with the Chugugi data in the 12 sites where both the 'Wootaek' and 'Chugugi' data are available. Excluding the 5 sites (Ganghwa, Jinju, Jeonju, Chuncheon, Hamheung) poor in sample data, the 'Wootaek' data 1 'Ri' and 1 'Seo' in 'Chugugi' unit (Bun) in the 7 sites; Suwon, Gwangju (Gyeonggi-do), Gongju, Daegu, Wonju, Haeju and Pyeongyang, were 11.1/5.6 Bun, 9.4/3.2 Bun, 14.0/5.7 Bun, 9.3/3.9 Bun, 13.6/4.3 Bun, 11.3/4.8 Bun and 16.8/7.4 Bun, respectively. The Chugugi unit 1 'Bun' is equall to approximately 2 'mm'. The average of the 7 sites is 13.1/5.7 Bun, however it becomes small to 11.7/4.5 Bun when the Pyeongyang of which data is considerably distributed over wide range is excluded, showing that the 'Wootaek' data 1 'Ri' is approximately the 2.3~2.6 times of 1 'Seo'. It is recommended to use the individual estimates of the sites in utilizing the 'Wootaek' rainfall data of 352 stations across the country restored from the "Gaksa-deungnok".

Calibration of Gauge Rainfall Considering Wind Effect (바람의 영향을 고려한 지상강우의 보정방법 연구)

  • Shin, Hyunseok;Noh, Huiseong;Kim, Yonsoo;Ly, Sidoeun;Kim, Duckhwan;Kim, Hungsoo
    • Journal of Wetlands Research
    • /
    • v.16 no.1
    • /
    • pp.19-32
    • /
    • 2014
  • The purpose of this paper is to obtain reliable rainfall data for runoff simulation and other hydrological analysis by the calibration of gauge rainfall. The calibrated gauge rainfall could be close to the actual value with rainfall on the ground. In order to analyze the wind effect of ground rain gauge, we selected the rain gauge sites with and without a windshield and standard rain gauge data from Chupungryeong weather station installed by standard of WMO. Simple linear regression model and artificial neural networks were used for the calibration of rainfalls, and we verified the reliability of the calibrated rainfalls through the runoff analysis using $Vflo^{TM}$. Rainfall calibrated by linear regression is higher amount of rainfall in 5%~18% than actual rainfall, and the wind remarkably affects the rainfall amount in the range of wind speed of 1.6~3.3m/s. It is hard to apply the linear regression model over 5.5m/s wind speed, because there is an insufficient wind speed data over 5.5m/s and there are also some outliers. On the other hand, rainfall calibrated by neural networks is estimated lower rainfall amount in 10~20% than actual rainfall. The results of the statistical evaluations are that neural networks model is more suitable for relatively big standard deviation and average rainfall. However, the linear regression model shows more suitable for extreme values. For getting more reliable rainfall data, we may need to select the suitable model for rainfall calibration. We expect the reliable hydrologic analysis could be performed by applying the calibration method suggested in this research.

Development of Meso-scale Short Range NWP System for the Cheju Regional Meteorological Office, Korea (제주 지역에 적합한 중규모 단시간 예측 시스템의 개발)

  • Kim, Yong-Sang;Choi, Jun-Tae;Lee, Yong-Hee;Oh, Jai-Ho
    • Journal of the Korean earth science society
    • /
    • v.22 no.3
    • /
    • pp.186-194
    • /
    • 2001
  • The operational meso-scale short range NWP system was developed for Cheju Regional Meteorological Office located at Cheju island, Korea. The Central Meteorological Service Center, KMA has reported the information on numerical weather prediction every 12 hours. But this information is not enough to determine the detail forecast for the regional meteorological office because the terrain of the Korean peninsula is very complex and the resolution of the numerical model provided by KMA headquarter is too coarse to resolve the local severe weather system such as heavy rainfall. LAPS and MM5 models were chosen for three-dimentional data assimilation and numerical weather prediction tools respectively. LAPS was designed to provide the initial data to all regional numerical prediction models including MM5. Synoptic observational data from GTS, satellite brightness temperature data from GMS-5 and the composite reflectivity data from 5 radar sites were used in the LAPS data assimilation for producing the initial data. MM5 was performed on PC-cluster based on 16 pentium CPUs which was one of the cheapest distributed parallel computer in these days. We named this system as Halla Short Range Prediction System (HSRPS). HSRPS was verified by heavy rainfall case in July 9, 1999, it showed that HSRPS well resolved local severe weather which was not simulated by 30 km MM5/KMA. Especially, the structure of rainfall amount was very close to the corresponding observation. HSRPS will be operating every 6 hours in the Cheju Regional Meteorological Office from April 2000.

  • PDF

A Study of Adoption on the Concept of Monthly Probable Maximum Precipitation (월 PMP 개념의 적용에 관한 연구)

  • Choi, Han-Kyu;Kim, Nam-Won;Choi, Yong-Mook;Yoon, Hee-Sub
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.241-248
    • /
    • 2001
  • Normally at a flood season the operation of the dam depends on a short range weather forecast that makes many difficulties of the management at a dry season. It is needed to study the pattern of the long period rainfall. The concept of PMP(Probable Maximum Precipitation) was used for designing dam. From the concept, this study is applied the concept of monthly probable maximum precipitation for operating dam. It can be possible to let us know the appropriateness of a limiting water level at a rainy season. For the operation of dam at a dry season this study can predict roughly the flood season's pattern of precipitation by month or period, therfore the prediction of precipitation can rise efficient operation of a dam.

  • PDF

Genetic Variability of Sorghum Charcoal Rot Pathogen (Macrophomina phaseolina) Assessed by Random DNA Markers

  • Bashasab, Rajkumar, Fakrudin;Kuruvinashetti, Mahaling S
    • The Plant Pathology Journal
    • /
    • v.23 no.2
    • /
    • pp.45-50
    • /
    • 2007
  • Genetic diversity among selected isolates of Macrophomina phaseolina, a causal agent of charcoal rot (stalk rot) disease in sorghum was studied using PCR-RAPD markers. A set of ten isolates, from ten different rabi sorghum genotypes representing two traditional sorghum growing situations viz., Dharwad- a transitional high rainfall region and Bijapur- a semi-arid low rainfall region in South India. From a set of 40 random primers tested, amplicon profiles of 15 were reproducible. A total of 149 amplicon levels, with an average of 9.9 bands per primer, were available for analysis, of which 148 were polymorphic (99.3%). It was possible to discriminate all the isolates with any of the 15 primers employed. UPGMA clustering of data indicated that the isolates shared varied levels of genetic similarity within a range of 0.14 to 0.72 similarity coefficient index and it was suggestive that grouping of isolates was not related to sampling location in anyway. A high level of genetic heterogeneity of 0.28 was recorded among the isolates.

Real time forecasting of rainfall-runoff using multiple model adaptive estimation (다중모델적응추정방식을 이용한 강우-유출량의 실시간 예측)

  • 최선욱;김운해;김영철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.24-27
    • /
    • 1996
  • The storage function method(SFM) is one of hydrologic flood routings which has been used most widely in Korea and Japan. This paper presents a storage function method using multiple model adaptive estimation(MMAE), in which a model set is generated by partitioning storage parameters over feasible range, and each storage function model is estimated, and then the weighted average of them is calculated. Finally, the future runoff is predicted in real time by means of observed data of water level at dam and rainfall. Simulation results applied to actual data show that the proposed method has much better performance than that of conventional SFM.

  • PDF

Spatial analysis of Design storm depth using Geostatistical (지구통계학적 기법을 이용한 설계호우깊이 공간분석)

  • Ahn, Sang Jin;Lee, Hyeong Jong;Yoon, Seok Hwan;Kwark, Hyun Goo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1047-1051
    • /
    • 2004
  • The design storm is a crucial element in urban drainage design and hydrological modeling. The total rainfall depth of a design storm is usually estimated by hydrological frequency analysis using historic rainfall records. The different geostatistical approaches (ordinary kriging, universal kriging) have been used as estimators and their results are compared and discussed. Variogram parameters, the sill, nugget effect and influence range, are analysis. Kriging method was applied for developing contour maps of design storm depths In bocheong stream basin. Effect to utilize weather radar data and grid-based basin model on the spatial variation characteristics of storm requires further study.

  • PDF

Forecasting the Flood Inflow into Irrigation Reservoir (관개저수지의 홍수유입량 예측)

  • 문종필;엄민용;박철동;김태얼
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.512-518
    • /
    • 1999
  • Recently rainfall and water evel are monitored via on -line system in real-time bases. We applied the on-line system to get the rainfall and waterlevel data for the development of the real-time flood forecasting model based on SCS method in hourly bases. Main parameters for the model calibration are concentration time of flood and soil moisture condition in the watershed. Other parameters of the model are based on SCS TR-%% and DAWAST model. Simplex method is used for promoting the accuracy of parameter estimation. The basic concept of the model is minimizing the error range between forcasted flood inflow and actual flood inflow, and accurately forecasting the flood discharge some hours in advance depending on the concentration time. The flood forecasting model developed was applied to the Yedang and Topjung reservoir.

  • PDF

A Developmont of Numerical Mo del on the Estimation of the Log-term Run-off for the Design of Riverheads Works -With Special Reference to Small and Medium Sijed Catchment Areas- (제수원공 설계를 위한 장기간 연속수수량 추정모형의 개발 - 중심유역을 중심으로)

  • 엄병현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.4
    • /
    • pp.59-72
    • /
    • 1987
  • Although long-term runoff analysis is important as much as flood analysis in the design of water works, the technological level of the former is relatively lower than that of the latter. In this respect, the precise estimation model for the volume of successive runoff should he developed as soon as possible. Up to now, in Korea, Gajiyama's formula has been widely used in long-term runoff analysis, which has many problems in applying in real situation. On the other hand, in flood analysis, unit hydrograph method has been exclusively used. Therefore, this study aims at trying to apply unit hydrograph method in long-term runoff analysis for the betterment of its estimation. Four test catchment areas were selected ; Maesan area in Namlum river as a representative area of Han river system, Cheongju area in Musim river as one of Geum river system, Hwasun area in Hwasun river as one of Yongsan river system, and Supyung area in Geum river as one of Nakdong river system. In the analysis of unit hydrograph, seperation of effective rainfall was carried out firstly. Considering that effective rainfall and moisture condition of catchrnent area are inside and outside of a phenomenon respectively and the latter is not considered in the analysis, Initial base flow(qb)was selected as an index of moisture condition. At the same time, basic equation(Eq.7) was established, in which qb can take a role as a parameter in relating between cumulative rainfall(P) and cumulative loss of rainfall(Ld). Based on the above equation, computer program for estimation model of qbwas seperately developed according to the range of qb, Developed model was applied to measured hydrographs and hyetographs for total 10 years in 4 test areas and effective rainfall was estimated. Estimation precision of model was checked as shown in Tab- 6 and Fig.8. In the next stage, based on the estimated effective rainfall(R) and runoff(Qd), a runoff distribution ratio was calculated for each teat area using by computerised least square method and used in making unit hydrographs in each test area. Significance of induced hydrographs was tested by checking the relative errors between estimated and measured runoff volume(Tab-9, 10). According to the results, runoff estimation error by unit hydrograph itself was merely 2 or 3 %, but other 2 or 3 % of error proved to be transferred error in the seperation of effective rainfall. In this study, special attentioning point is that, in spite of different river systems and forest conditions of test areas, standardized unit hydrographs for them have very similar curve shape, which can be explained by having similar catchinent characteristics such as stream length, catchinent area, slope, and vegetation intensity. That fact should be treated as important factor ingeneralization of unit hydrograph method.

  • PDF

Effects of Surface Compaction Treatment on Soil Loss from Disturbed Bare Slopes under Simulated Rainfalls (인공강우 시 나지교란사면 토사유출에 미치는 다짐처리의 영향)

  • Park, Sang Deog;Shin, Seung Sook;Kim, Seon Jeong;Choi, Byoungkoo
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.5
    • /
    • pp.559-568
    • /
    • 2013
  • Surface compaction significantly impacts runoff and soil erosion under rainfall since it leads to changes of soil physical characteristics such as increase of bulk density and shear stress, change of microporosity, and decrease of hydraulic conductivity. This study addressed surface compaction effects on runoff and soil loss from bare and disturbed soils that are commonly distributed on construction sites. Thirty-six rainfall simulations from three replicates of each involving rainfall intensities (68.5 mm/hr, 95.6 mm/hr) and plot gradients ($5^{\circ}$, $12.5^{\circ}$, $20^{\circ}$) were conducted to measure runoff and soil loss for two different soil surface treatments (compacted surface, non-compacted surface). Compacted surface increased significantly soil bulk density and soil strength. However, the effect of surface treatments on runoff changed with rainfall intensity and plot gradient. Rainfall intensity and plot gradient had a positive effect on mean soil loss. In addition, the effect of surface treatments on soil loss responded differently with rainfall intensity and plot gradient. Compacted surfaces increased soil loss at gentle slope ($5^{\circ}$) while they decreased soil loss at steep slope ($20^{\circ}$). These results indicate that there exists transitional slope range ($10{\sim}15^{\circ}$) between gentle and steep slope by surface compaction effects on soil loss under disturbed bare soils and simulated rainfalls.