• 제목/요약/키워드: Rainfall prediction

Search Result 574, Processing Time 0.026 seconds

Evaluation of SWMM Snow-melt Module to Secure Bi-Modal Tram Operation (바이모달 트램 운행 안전성 확보를 위한 SWMM 융설 모듈 적용성 평가)

  • Kim, Jong-Gun;Park, Young-Kon;Yoon, Hee-Taek;Park, Youn-Shik;Jang, Won-Seok;Yoo, Dong-Seon;Lim, Kyoung-Jae
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.5
    • /
    • pp.441-448
    • /
    • 2008
  • Increasing urban sprawl and climate changes have been causing unexpected high-intensity rainfall events. Thus there are needs to enhance conventional disaster management system for comprehensive actions to secure safety. Therefore long-term and comprehensive flood management plans need to be well established. Recently torrential snowfall are occurring frequently, causing have snow traffic jams on the road. To secure safety and on-time operation of the Bi-modal tram system, well-structured disaster management system capable of analyzing the show pack melt/freezing due to unexpected snowfall are needed. To secure safety of the Bi-modal tram system due to torrential snow-fall, the snow melt simulation capability was investigated. The snow accumulation and snow melt were measured to validate the SWMM snow melt component. It showed that there was a good agreement between measured snow melt data and the simulated ones. Therefore, the Bi-modal tram disaster management system will be able to predict snow melt reasonably well to secure safety of the Bi-modal tram system during the winter. The Bi-modal tram disaster management system can be used to identify top priority area for know removal within the tram route in case of torrential snowfall to secure on-time operation of the tram. Also it can be used for detour route in the tram networks based on the disaster management system prediction.

Landslide Susceptibility Prediction using Evidential Belief Function, Weight of Evidence and Artificial Neural Network Models (Evidential Belief Function, Weight of Evidence 및 Artificial Neural Network 모델을 이용한 산사태 공간 취약성 예측 연구)

  • Lee, Saro;Oh, Hyun-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.299-316
    • /
    • 2019
  • The purpose of this study was to analyze landslide susceptibility in the Pyeongchang area using Weight of Evidence (WOE) and Evidential Belief Function (EBF) as probability models and Artificial Neural Networks (ANN) as a machine learning model in a geographic information system (GIS). This study examined the widespread shallow landslides triggered by heavy rainfall during Typhoon Ewiniar in 2006, which caused serious property damage and significant loss of life. For the landslide susceptibility mapping, 3,955 landslide occurrences were detected using aerial photographs, and environmental spatial data such as terrain, geology, soil, forest, and land use were collected and constructed in a spatial database. Seventeen factors that could affect landsliding were extracted from the spatial database. All landslides were randomly separated into two datasets, a training set (50%) and validation set (50%), to establish and validate the EBF, WOE, and ANN models. According to the validation results of the area under the curve (AUC) method, the accuracy was 74.73%, 75.03%, and 70.87% for WOE, EBF, and ANN, respectively. The EBF model had the highest accuracy. However, all models had predictive accuracy exceeding 70%, the level that is effective for landslide susceptibility mapping. These models can be applied to predict landslide susceptibility in an area where landslides have not occurred previously based on the relationships between landslide and environmental factors. This susceptibility map can help reduce landslide risk, provide guidance for policy and land use development, and save time and expense for landslide hazard prevention. In the future, more generalized models should be developed by applying landslide susceptibility mapping in various areas.

Estimation of Road Surface Condition during Summer Season Using Machine Learning (기계학습을 통한 여름철 노면상태 추정 알고리즘 개발)

  • Yeo, jiho;Lee, Jooyoung;Kim, Ganghwa;Jang, Kitae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.121-132
    • /
    • 2018
  • Weather is an important factor affecting roadway transportation in many aspects such as traffic flow, driver 's driving patterns, and crashes. This study focuses on the relationship between weather and road surface condition and develops a model to estimate the road surface condition using machine learning. A road surface sensor was attached to the probe vehicle to collect road surface condition classified into three categories as 'dry', 'moist' and 'wet'. Road geometry information (curvature, gradient), traffic information (link speed), weather information (rainfall, humidity, temperature, wind speed) are utilized as variables to estimate the road surface condition. A variety of machine learning algorithms examined for predicting the road surface condition, and a two - stage classification model based on 'Random forest' which has the highest accuracy was constructed. 14 days of data were used to train the model and 2 days of data were used to test the accuracy of the model. As a result, a road surface state prediction model with 81.74% accuracy was constructed. The result of this study shows the possibility of estimating the road surface condition using the existing weather and traffic information without installing new equipment or sensors.

433 MHz Radio Frequency and 2G based Smart Irrigation Monitoring System (433 MHz 무선주파수와 2G 통신 기반의 스마트 관개 모니터링 시스템)

  • Manongi, Frank Andrew;Ahn, Sung-Hoon
    • Journal of Appropriate Technology
    • /
    • v.6 no.2
    • /
    • pp.136-145
    • /
    • 2020
  • Agriculture is the backbone of the economy of most developing countries. In these countries, agriculture or farming is mostly done manually with little integration of machinery, intelligent systems and data monitoring. Irrigation is an essential process that directly influences crop production. The fluctuating amount of rainfall per year has led to the adoption of irrigation systems in most farms. The absence of smart sensors, monitoring methods and control, has led to low harvests and draining water sources. In this research paper, we introduce a 433 MHz Radio Frequency and 2G based Smart Irrigation Meter System and a water prepayment system for rural areas of Tanzania with no reliable internet coverage. Specifically, Ngurudoto area in Arusha region where it will be used as a case study for data collection. The proposed system is hybrid, comprising of both weather data (evapotranspiration) and soil moisture data. The architecture of the system has on-site weather measurement controllers, soil moisture sensors buried on the ground, water flow sensors, a solenoid valve, and a prepayment system. To achieve high precision in linear and nonlinear regression and to improve classification and prediction, this work cascades a Dynamic Regression Algorithm and Naïve Bayes algorithm.

Predicting the amount of water shortage during dry seasons using deep neural network with data from RCP scenarios (RCP 시나리오와 다층신경망 모형을 활용한 가뭄시 물부족량 예측)

  • Jang, Ock Jae;Moon, Young Il
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.2
    • /
    • pp.121-133
    • /
    • 2022
  • The drought resulting from insufficient rainfall compared to the amount in an ordinary year can significantly impact a broad area at the same time. Another feature of this disaster is hard to recognize its onset and disappearance. Therefore, a reliable and fast way of predicting both the suffering area and the amount of water shortage from the upcoming drought is a key issue to develop a countermeasure of the disaster. However, the available drought scenarios are about 50 events that have been observed in the past. Due to the limited number of events, it is difficult to predict the water shortage in a case where the pattern of a natural disaster is different from the one in the past. To overcome the limitation, in this study, we applied the four RCP climate change scenarios to the water balance model and the annual amount of water shortage from 360 drought events was estimated. In the following chapter, the deep neural network model was trained with the SPEI values from the RCP scenarios and the amount of water shortage as the input and output, respectively. The trained model in each sub-basin enables us to easily and reliably predict the water shortage with the SPEI values in the past and the predicted meteorological conditions in the upcoming season. It can be helpful for decision-makers to respond to future droughts before their onset.

Application of Artificial Intelligence Technology for Dam-Reservoir Operation in Long-Term Solution to Flood and Drought in Upper Mun River Basin

  • Areeya Rittima;JidapaKraisangka;WudhichartSawangphol;YutthanaPhankamolsil;Allan Sriratana Tabucanon;YutthanaTalaluxmana;VarawootVudhivanich
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.30-30
    • /
    • 2023
  • This study aims to establish the multi-reservoir operation system model in the Upper Mun River Basin which includes 5 main dams namely, Mun Bon (MB), Lamchae (LC), Lam Takhong (LTK), Lam Phraphoeng (LPP), and Lower Lam Chiengkrai (LLCK) Dams. The knowledge and AI technology were applied aiming to develop innovative prototype for SMART dam-reservoir operation in future. Two different sorts of reservoir operation system model namely, Fuzzy Logic (FL) and Constraint Programming (CP) as well as the development of rainfall and reservoir inflow prediction models using Machine Learning (ML) technique were made to help specify the right amount of daily reservoir releases for the Royal Irrigation Department (RID). The model could also provide the essential information particularly for the Office of National Water Resource of Thailand (ONWR) to determine the short-term and long-term water resource management plan and strengthen water security against flood and drought in this region. The simulated results of base case scenario for reservoir operation in the Upper Mun from 2008 to 2021 indicated that in the same circumstances, FL and CP models could specify the new release schemes to increase the reservoir water storages at the beginning of dry season of approximately 125.25 and 142.20 MCM per year. This means that supplying the agricultural water to farmers in dry season could be well managed. In other words, water scarcity problem could substantially be moderated at some extent in case of incapability to control the expansion of cultivated area size properly. Moreover, using AI technology to determine the new reservoir release schemes plays important role in reducing the actual volume of water shortfall in the basin although the drought situation at LTK and LLCK Dams were still existed in some periods of time. Meanwhile, considering the predicted inflow and hydrologic factors downstream of 5 main dams by FL model and minimizing the flood volume by CP model could ensure that flood risk was considerably minimized as a result of new release schemes.

  • PDF

Analysis of Hydraulic behavior in Unsaturated Soil Slope for the Boundary Condition and Hysteresis of SWCC (경계 조건과 불포화 함수 특성 곡선의 이력에 따른 불포화 토사 사면의 수리적 거동 분석)

  • Lee, Eo-Ryeong;Park, Hyun-Su;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.1
    • /
    • pp.15-25
    • /
    • 2023
  • Recent weather changes have led to an increase in heavy rainfall resulting in frequent large-scale slope failures. To minimize damage to life and property, a measurement system is used in slope failure warning systems. However, understanding the slope failure behavior is difficult as the measurement system only measures a specific point. Therefore, numerical analysis must be p erformed with the measurement system. The soil water characteristic curve (SWCC) drying curve and boundary conditions that consider evapotranspiration and precipitation have been applied to numerical analysis, but the hysteresis of SWCC affects the numerical analysis results. To address this, a new evapotranspiration calculation method is proposed and applied to boundary conditions, and the measurement data are compared with the results of the numerical analysis. This method takes into account the different infiltration behaviors on evapotranspiration according to the drying and wetting curves of the SWCC, and allows for a more rational prediction of water movement on unsaturated slopes.

Real-Time Flood Forecasting by Using a Measured Data Based Nomograph for Small Streams (계측자료 기반 Nomograph를 이용한 실시간 소하천 홍수량 산정 연구)

  • Tae Sung Cheong;Changwon Choi;Sung Je Yei;Kang Min Koo
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.116-124
    • /
    • 2023
  • As the flood damage on small streams increase due to the increase in frequency of extreme climate events, the need to measure hydraulic data of them has increased for disaster risk management. National Disaster Management Institute, Ministry of Interior and Safety develops CADMT, a CCTV-based automatic discharge measurement technology, and operates pilot small streams to verify its performance and develop disaster risk management technology. The research selects two small streams such as the Neungmac and the Jungsunpil streams to develop the Nomograph by using the 4-Parameter Logistic method using only the observed rainfall data from the Automatic Weather System operated by the Korea Meteorological Agency closest to the small streams and discharge data collected by using the CADMT. To evaluate developed Nomograph, the research forecasts floods discharges in each small stream and compares the result with the observed discharges. As a result of the evaluations, the forecasted value is found to represent the observed value well, so if more accurate observed data are collected and the Nomograph based on it is developed in the future, the high-accuracy flood prediction and warning will be possible.

Combined analysis of meteorological and hydrological drought for hydrological drought prediction and early response - Focussing on the 2022-23 drought in the Jeollanam-do - (수문학적 가뭄 예측과 조기대응을 위한 기상-수문학적 가뭄의 연계분석 - 2022~23 전남지역 가뭄을 대상으로)

  • Jeong, Minsu;Hong, Seok-Jae;Kim, Young-Jun;Yoon, Hyeon-Cheol;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.195-207
    • /
    • 2024
  • This study selected major drought events that occurred in the Jeonnam region from 1991 to 2023, examining both meteorological and hydrological drought occurrence mechanisms. The daily drought index was calculated using rainfall and dam storage as input data, and the drought propagation characteristics from meteorological drought to hydrological drought were analyzed. The characteristics of the 2022-23 drought, which recently occurred in the Jeonnam region and caused serious damage, were evaluated. Compared to historical droughts, the duration of the hydrological drought for 2022-2023 lasted 334 days, the second longest after 2017-2018, the drought severity was evaluated as the most severe at -1.76. As a result of a linked analysis of SPI (StandQardized Precipitation Index), and SRSI (Standardized Reservoir Storage Index), it is possible to suggest a proactive utilization for SPI(6) to respond to hydrological drought. Furthermore, by confirming the similarity between SRSI and SPI(12) in long-term drought monitoring, the applicability of SPI(12) to hydrological drought monitoring in ungauged basins was also confirmed. Through this study, it was confirmed that the long-term dryness that occurs during the summer rainy season can transition into a serious level of hydrological drought. Therefore, for preemptive drought response, it is necessary to use real-time monitoring results of various drought indices and understand the propagation phenomenon from meteorological-agricultural-hydrological drought to secure a sufficient drought response period.

A Development of Flood Mapping Accelerator Based on HEC-softwares (HEC 소프트웨어 기반 홍수범람지도 엑셀러레이터 개발)

  • Kim, JongChun;Hwang, Seokhwan;Jeong, Jongho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.173-182
    • /
    • 2024
  • In recent, there has been a trend toward primarily utilizing data-driven models employing artificial intelligence technologies, such as machine learning, for flood prediction. These data-driven models offer the advantage of utilizing pre-training results, significantly reducing the required simulation time. However, it remains that a considerable amount of flood data is necessary for the pre-training in data-driven models, while the available observed data for application is often insufficient. As an alternative, validated simulation results from physically-based models are being employed as pre-training data alongside observed data. In this context, we developed a flood mapping accelerator to generate flood maps for pre-training. The proposed accelerator automates the entire process of flood mapping, i.e., estimating flood discharge using HEC-1, calculating water surface levels using HEC-RAS, simulating channel overflow and generating flood maps using RAS Mapper. With the accelerator, users can easily prepare a database for pre-training of data-driven models from hundreds to tens of thousands of rainfall scenarios. It includes various convenient menus containing a Graphic User Interface(GUI), and its practical applicability has been validated across 26 test-beds.