DOI QR코드

DOI QR Code

Combined analysis of meteorological and hydrological drought for hydrological drought prediction and early response - Focussing on the 2022-23 drought in the Jeollanam-do -

수문학적 가뭄 예측과 조기대응을 위한 기상-수문학적 가뭄의 연계분석 - 2022~23 전남지역 가뭄을 대상으로

  • Jeong, Minsu (Drought Research Center) ;
  • Hong, Seok-Jae (Department of Civil Engineering, Joongbu University) ;
  • Kim, Young-Jun (Department of Civil Engineering, Joongbu University) ;
  • Yoon, Hyeon-Cheol (National Integrated Drought Center, National Disaster Management Research Institute) ;
  • Lee, Joo-Heon (Civil Engineering Department, Joongbu University)
  • 정민수 (중부대학교 가뭄연구센터) ;
  • 홍석재 (중부대학교 토목공학과) ;
  • 김영준 (중부대학교 토목공학과) ;
  • 윤현철 (국립재난안전연구원 방재연구실 국가통합가뭄센터) ;
  • 이주헌 (중부대학교 토목공학과)
  • Received : 2023.10.22
  • Accepted : 2024.03.07
  • Published : 2024.03.31

Abstract

This study selected major drought events that occurred in the Jeonnam region from 1991 to 2023, examining both meteorological and hydrological drought occurrence mechanisms. The daily drought index was calculated using rainfall and dam storage as input data, and the drought propagation characteristics from meteorological drought to hydrological drought were analyzed. The characteristics of the 2022-23 drought, which recently occurred in the Jeonnam region and caused serious damage, were evaluated. Compared to historical droughts, the duration of the hydrological drought for 2022-2023 lasted 334 days, the second longest after 2017-2018, the drought severity was evaluated as the most severe at -1.76. As a result of a linked analysis of SPI (StandQardized Precipitation Index), and SRSI (Standardized Reservoir Storage Index), it is possible to suggest a proactive utilization for SPI(6) to respond to hydrological drought. Furthermore, by confirming the similarity between SRSI and SPI(12) in long-term drought monitoring, the applicability of SPI(12) to hydrological drought monitoring in ungauged basins was also confirmed. Through this study, it was confirmed that the long-term dryness that occurs during the summer rainy season can transition into a serious level of hydrological drought. Therefore, for preemptive drought response, it is necessary to use real-time monitoring results of various drought indices and understand the propagation phenomenon from meteorological-agricultural-hydrological drought to secure a sufficient drought response period.

본 연구는 전남지역 지역을 대상으로 과거에 발생했던 주요 가뭄사상을 선정하여 기상학적 가뭄과 수문학적 가뭄 발생 메커니즘을 분석하였다. 강우량 및 댐저수량을 입력자료로 일단위의 가뭄지수를 산정하였으며 기상학적 가뭄에서 수문학적 가뭄으로의 가뭄전이특성을 분석하였다. 최근에 전남지역에서 발생하여 심각한 피해를 야기한 2022~23년의 가뭄 특성을 평가하였으며, 과거에 발생했던 가뭄과 비교하면, 수문학적 가뭄의 지속기간은 2017~2018년 다음으로 장기간인 334일 지속되었고, 가뭄 심도는 -1.76으로 가장 심각한 것으로 평가되었다. 또한, 기상학적 가뭄지수인 SPI (Standardized Precipitation Index)와 수문학적 가뭄지수인 SRSI(Standardized Reservoir Storage Index)를 연계분석한 결과, 수문학적 가뭄 대응을 위한 SPI(6)의 선행적 활용방안을 제시할 수 있었다. 더우기, SRSI와 SPI(12)의 가뭄감시의 유사성을 통하여 미계측 유역의 수문학적 가뭄감시에 SPI(12)의 적용가능성도 확인하였다. 본 연구결과를 통하여 여름철 우기에 발생하는 장기간의 건조현상은 심각한 수준의 수문학적 가뭄으로의 전이가 될 수 있음을 확인했다. 따라서 선제적 가뭄대응을 위해서는 다양한 가뭄지수 실시간 모니터링 결과를 활용하고, 기상-농업-수문학적 가뭄으로의 전이현상을 이해하여 충분한 대응기간을 확보할 필요가 있다.

Keywords

Acknowledgement

이 논문은 행정안전부 재난안전 공동연구 기술개발사업의 지원을 받아 수행된 연구임(2022-MOIS63-001(RS-2022-ND641011)).

References

  1. Gusyev, M.A., Hasegawa, A., Magome, J., Kuribayashi, D., Sawano, H., and Lee, S. (2015). "Drought assessment in the Pampanga River Basin, the Philippines. part 1: A role of dam infrastructure in historical droughts." Proceedings of the 21st International Congress on Modelling and Simulation (MODSIM 2015), Broadbeach, Queensland, Australia. doi: 10.13140/RG.2.1.4931.4321
  2. Kwak, J.W., Kim, D.G., Lee, J.S., and Kim, H.S. (2012). "Hydrological drought analysis using copula theory." KSCE Journal of Civil and Environmental Engineering Research, Vol. 32, No. 3B, pp. 161-168.
  3. Lee, J.H., Park, S.Y., Kim, M.G., and Chung, I.M. (2021). "Hydrological drought analysis and monitoring using multiple drought indices: The case of Mulrocheon watershed." KSCE Journal of Civil and Environmental Engineering Research, Vol. 41, No. 6, pp. 477-484.
  4. Lee, K.D., Son, K.H., and Lee, B.J. (2020). "A study on determining threshold level of precipitation for drought management in the dam basin." Journal of Korea Water Resources Association, Vol. 53, No. 4, pp. 293-301. https://doi.org/10.3741/JKWRA.2020.53.4.293
  5. Maliva, R., and Missimer, T. (2012). Arid lands water evaluation and management. Environmental Science and Engineering, Springer-Verlag Berlin Heidelberg, pp. 21-39.
  6. McKee, T.B., Doesken, N.J., and Kleist, J. (1993). "The relationship of drought frequency and duration of time scales." 8th Conference on Applied Climatology, Aneheim, CA, U.S., pp. 179-183.
  7. Nalbantis, I. (2008). "Evaluation of a hydrological drought index." European Water, Vol. 23, No. 24, pp. 67-77.
  8. Peters, E. (2003). Propagation of drought through groundwater systems: Illustrated in the Pang (UK) and Upper-Guadiana (ES) catchments. Ph.D. Dissertation, Wageningen University, the Netherlands.
  9. Savenije, H.H.G., Hoekstra, A.Y., and Van der Zaag, P. (2014). "Evolving water science in the Anthropocene." Hydrology and Earth System Sciences, Vol. 18, No. 1, pp. 319-332. https://doi.org/10.5194/hess-18-319-2014
  10. Shin, J.Y., Kwon, H.H., Lee. J.H., and Kim, T.W. (2020). "Probabilistic long-term hydrological drought forecast using Bayesian networks and drought propagation." Meteorological Applications, Vol. 27, No. 1, e1827.
  11. Sur, C.Y., Park, S.Y., Kim, T.W., and Lee, J.H. (2019). "Remote sensing-based agricultural drought monitoring using hydrometeorological variables." KSCE Journal of Civil Engineering, Vol. 23, No. 12, pp. 5244-5256. https://doi.org/10.1007/s12205-019-2242-0
  12. Van Loon, A.F. (2015). "Hydrological drought explained. wiley interdisciplinary reviews:." Water, Vol. 2, No. 4, pp. 359-392. https://doi.org/10.1002/wat2.1085
  13. Wang, J., Wang, W., Cheng, H., Wang, H., and Zhu, Y. (2021). "Propagation from meteorological to hydrological drought and its influencing factors in the Huaihe River Basin." Water, Vol. 13, No. 14, 1985. doi: 10.3390/w13141985
  14. Wang, W., Ertsen, M.-W., Svoboda, M.-D., and Hafeez, M. (2016). "Propagation of drought: From meteorological drought to agricultural and hydrological drought." Advances in Meteorology, Vol. 2016, 6547209. doi: 10.1155/2016/6547209
  15. Won, K.J., and Chung, E.S. (2016). "Drought analysis of Cheongmicheon watershed using meteorological, agricultural and hydrological drought indices." Journal of Korea Water Resources Association, KWRA, Vol. 49, No. 6, pp. 509-518. https://doi.org/10.3741/JKWRA.2016.49.6.509
  16. Yevjevich, V. (1967). An objective approach to definitions and investigations of continental hydrologic droughts. Hydrology Paper, No. 23, Colorado State University, Fort Collins, CO, U.S., pp. 4-18.
  17. Yoo, J.Y., Yu, J.S., Kwon, H.H., and Kim, T.W. (2016). "Determination of drought events considering the possibility of relieving drought and estimation of design drought severity" Journal of Korea Water Resources Association, Vol. 49, No. 4, pp. 275-282. https://doi.org/10.3741/JKWRA.2016.49.4.275
  18. Yu, M., Cho, Y., Kim, T.W., and Chae, H.S. (2018). "Analysis of drought propagation using hydrometeorological data: From meteorological drought to agricultural drought." Journal of Korea Water Resources Association, Vol. 51, No. 3, pp. 195-205.