• Title/Summary/Keyword: Rainfall Simulator

검색결과 41건 처리시간 0.042초

LID 기술의 효율성 검증을 위한 강우-유출 모의장치 개발 및 검증실험에 관한 연구 (The Study on Development and Verification of Rainfall-Runoff Simulator for LID Technology Verification)

  • 장영수;김미은;백종석;신현석
    • 한국수자원학회논문집
    • /
    • 제47권6호
    • /
    • pp.513-522
    • /
    • 2014
  • 최근 도시화 및 기후변화에 의한 홍수피해의 증가로 인하여 이에 대응하는 방안으로 저영향개발(LID) 요소기술에 관하여 다양하게 개발이 되고 있다. 하지만 이러한 요소기술에 대한 효율을 검증할 수 있는 표준화된 검증방법 및 기기는 부재한 실정이다. 본 연구에서는 LID 기법에 대한 물순환의 효율성 검증이 가능한 강우-유출 모의장치를 개발하였다. 소유역 내 강우가 균등하게 분사될 수 있도록 강우공간분포실험 및 유입유량-유효우량 관계 실험을 통하여 강우를 검증하고 유입되는 강우와 이로 인해 발생되는 침투 및 지표유출 관계 실험을 실시하였다. 그 결과 노즐의 종류에 따른 적정유량범위와 RPM의 관계를 정리하였으며 강우-유출 모의장치를 이용한 실험을 통해 투수면과 불투수면에서의 강우 시의 수문학적 물순환(지표유출, 중간유출, 침투량)의 관계를 정량적으로 검증하였다.

이중편파레이더 시뮬레이터 개발을 위한 2차원 영상우적계 관측자료의 활용가능성 연구 (Study on the Application of 2D Video Disdrometer to Develope the Polarimetric Radar Data Simulator)

  • 김해림;박혜숙;박향숙;박종서
    • 대기
    • /
    • 제24권2호
    • /
    • pp.173-188
    • /
    • 2014
  • The KMA has cooperated with the Oklahoma University in USA to develop a Polarimetric Radar Data (PRD) simulator to improve the microphysical processes in Korea Local Analysis and Prediction System (KLAPS), which is critical for the utilization of PRD into Numerical Weather Prediction (NWP) field. The simulator is like a tool to convert NWP data into PRD, so it enables us to compare NWP data with PRD directly. The simulator can simulate polarimetric radar variables such as reflectivity (Z), differential reflectivity ($Z_{DR}$), specific differential phase ($K_{DP}$), and cross-correlation coefficient (${\rho}_{hv}$) with input of the Drop Size Distribution (DSD) and scattering calculation of the hydrometeors. However, the simulator is being developed based on the foreign observation data, therefore the PRD simulator development reflecting rainfall characteristics of Korea is needed. This study analyzed a potential application of the 2-Dimension Video Disdrometer (2DVD) data by calculating the raindrop axis ratio according to the rain-types to reflect Korea's rainfall characteristics into scattering module in the simulator. The 2DVD instrument measures the precipitation DSD including the fall velocity and the shape of individual raindrops. We calculated raindrop axis ratio for stratiform, convective and mixed rainfall cases after checking the accuracy of 2DVD data, which usually represent the scattering characteristics of precipitation. The raindrop axis ratio obtained from 2DVD data are compared with those from foreign database in the simulator. The calculated the dual-polarimetric radar variables from the simulator using the obtained raindrop axis ratio are also compared with in situ dual-polarimetric observation data at Bislsan (BSL). 2DVD observation data show high accuracies in the range of 0.7~4.8% compared with in situ rain gauge data which represents 2DVD data are sufficient for the use to simulator. There are small differences of axis ratio in the diameter below 1~2 mm and above 4~5 mm, which are more obvious for bigger raindrops especially for a strong convective rainfall case. These differences of raindrop axis ratio between domestic and foreign rainfall data base suggest that the potential use of disdrometer observation can develop of a PRD simulated suitable to the Korea precipitation system.

인공강우기 기반 확률강우재현을 통한 식생유니트형 LID시스템의 우수유출지연 효과분석 (Analysis of Rainfall Runoff Delay Effect of Vegetation Unit-type LID System through Rainfall Simulator-based Probable Rainfall Recreation)

  • 김태한;박정현;최부헌
    • 한국환경복원기술학회지
    • /
    • 제22권6호
    • /
    • pp.115-124
    • /
    • 2019
  • In a climate change environment where heat damage and drought occur during a rainy season such as in 2018, a vegetation-based LID system that enables disaster prevention as well as environment improvement is suggested in lieu of an installation-type LID system that is limited to the prevention of floods. However, the quantification of its performance as against construction cost is limited. This study aims to present an experiment environment and evaluation method on quantitative performance, which is required in order to disseminate the vegetation-based LID system. To this end, a 3rd quartile huff time distribution mass curve was generated for 20-year frequency, 60-minute probable rainfall of 68mm/hr in Cheonan, and effluent was analyzed by recreating artificial rainfall. In order to assess the reliability of the rainfall event simulator, 10 repeat tests were conducted at one-minute intervals for 20 minutes with minimum rainfall intensity of 22.29mm/hr and the maximum rainfall intensity of 140.69mm/hr from the calculated probable rainfall. Effective rainfall as against influent flow was 21.83mm/hr (sd=0.17~1.36, n=20) on average at the minimum rainfall intensity and 142.27mm/hr (sd=1.02~3.25, n=20) on average at the maximum rainfall intensity. In artificial rainfall recreation experiments repeated for three times, the most frequent quartile was found to be the third quartile, which is around 40 minutes after beginning the experiment. The peak flow was observed 70 minutes after beginning the experiment in the experiment zone and after 50 minutes in the control zone. While the control zone recorded the maximum runoff intensity of 2.26mm/min(sd=0.25) 50 minutes after beginning the experiment, the experiment zone recorded the maximum runoff intensity of 0.77mm/min (sd=0.15) 70 minutes after beginning the experiment, which is 20 minutes later than the control zone. Also, the maximum runoff intensity of the experiment zone was 79.6% lower than that of the control zone, which confirmed that vegetation unit-type LID system had rainfall runoff reduction and delay effects. Based on the above findings, the reliability of a lab-level rainfall simulator for monitoring the vegetation-based LID system was reviewed, and maximum runoff intensity reduction and runoff time delay were confirmed. As a result, the study presented a performance evaluation method that can be applied to the pre-design of the vegetation-based LID system for rainfall events on a location before construction.

실내인공강우기를 이용한 경사지 밭의 토양유실량과 오염부하 모의 (Simulation of generable muddy water quantity and pollutant loads in sloping field using artificial rainfall simulator)

  • 신민환;최용훈;서지연;이재운;최중대
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.986-990
    • /
    • 2009
  • Using artificial rainfall simulator, the soil loss, which is deemed as most cause of muddy water problem among Non-point source(NPS) pollutant, was studied by the analysis of direct runoff flow, groundwater runoff, and groundwater storage properties concerned with rainfall intensity, slope of area, and land cover. The direct runoff showed increasing tendency in both straw covered and bared boxes which are 5%, 10%, and 20% sloped respectively. Also the direct runoff volume from straw covered surface boxes were much lower than bared surface boxes. It's deemed as that the infiltration capacity of straw covered surface boxes were increased, because the surface sealing by fine material of soil surface didn't occurred due to the straw covering. Under the same rainfall intensity and slope condition, 2.4 ${\sim}$ 8.2 times of sediment yield were occurred from bared surface boxes more than straw covered surface boxes. The volume of infiltrated were increased due to straw cover, the direct runoff flow were decreased with decreasing of tractive force in surface. To understand of relationship the rate of direct runoff flow, groundwater runoff, and groundwater storage by the rainfall intensity, slope, and land cover, the statistical test was performed. It shows good relationship between most of factors, expect between the rate of groundwater storage and rainfall intensity.

  • PDF

모형토조실험을 이용한 강우시 토층의 포화속도 산정 (Estimation of Saturation Velocity in Soils During Rainfall using Soil Box Test)

  • 김철민;송영석;김학준
    • 지질공학
    • /
    • 제25권3호
    • /
    • pp.377-385
    • /
    • 2015
  • 본 연구에서는 강우강도에 따른 토층내 포화속도를 산정하기 위하여 모형실험장치를 개발하고 일련의 모형실험을 수행하였다. 모형실험장치는 모형토조, 강우재현장치 및 계측장치로 구성되어 있다. 모형지반(60 cm × 50 cm × 15 cm)은 상대밀도 75%의 주문진 표준사로 조성하였으며, 강우재현장치는 강우강도의 조절이 가능하도록 하였다. 그리고 토층내 강우침투시 깊이별 체적함수비 및 모관흡수력의 변화를 측정하기 위하여 TDR과 Tensiometer를 설치하였다. 모형실험결과 토층의 입도가 균등하고 투수계수가 상대적으로 크므로 강우시 지표면에서 습윤전선이 형성되어 하강하는 것이 아니라 하부 바닥면에서부터 지하수위가 형성되어 상승하면서 포화가 진행되었다. 강우시 토층내 흡입응력의 변화를 살펴본 결과 토층 내에서 체적함수비가 증가함에 따라 흡입응력은 감소하며, 체적함수비가 20-30% 사이에서 흡입응력은 비교적 빠르게 감소하였다. 강우강도와 토층의 평균포화속도를 회귀분석한 결과 강우강도에 따른 평균포화속도는 Vsavg (cm/sec) = 0.068IR (mm/hr)와 같이 제안할 수 있다.

강우강도에 따른 산사태 확산범위 예측을 위한 모형실험 (Model Test to Predict the Runout Distance of Landslide according to Hourly Rainfall)

  • 송영석;채병곤;김원영;서용석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.12-19
    • /
    • 2006
  • Landslide model experiments considering hourly rainfall were performed to investigate and predict the run out distance induced by landslides. The model flume and the rainfall simulator were designed and produced. The model flume was designed in consideration of the landslide characteristics of Korea. The landslides in Korea were mainly occurred in the interface between soil layer and rock layer. The rainfall simulator was produced for controlling hourly rainfall ranged from 100mm/hr to 1,000mm/hr. Jumnunjin standard sand as slope soils was placed on the model flume. The model experiments were performed with changing the hourly rainfall ranged from 150mm/hr to 250mm/hr. In this experiments, the inclination of slope was 25o and the relative density of slope soils was 35%. As a result of experiments, the pore water pressure is rapidly increased at landslide occurring time, and the scale of landslide is increased with increasing in hourly rainfall. The spreading range of run out distance is occurred with pan type, and the spreading width and length are rapidly increased in its early stage and slowly increased after early stage. Also, The increasing velocity of run out distance of debris is influenced by hourly rainfall.

  • PDF

경사도와 인공강우 강도가 토양유실에 미치는 영향 (Effects of Slope Gradient and Rainfall Intensity on Soil Losses with Rainfall Simulator Experiment)

  • 이계준;이정태;류종수;오동식;김점순
    • 한국토양비료학회지
    • /
    • 제45권6호
    • /
    • pp.877-881
    • /
    • 2012
  • 대관령 지역에 많이 분포하고 있는 두 토양, 석비레 (Saprolite) 토양과 차항통 (Chahang series) 토양을 사용하여 경사면이 균일한 나지 토양에서 경사도 0.5, 7, 15, 30%와 강우강도 20, 60, $90mm\;hr^{-1}$의 조합으로 12처리를 하여 토양 유실에 대한 인공강우실험을 하였다. 그 결과를 요약하면 다음과 같다. 석비레 (Saprolite) 토양에서는 경사도 7% 까지는 토양유실이 적게 나타나다가 7% 이상의 경사면에서는 급격하게 증가하였고 차항통 (Chahang series) 토양은 경사도, 강우강도 증가와 함께 유실이 점증하였고, 경사도와 강우강도가 적은조합에서도 유실이 다소 크게 나타났다. 경사도 15, 30%와 강우강도 60, 90mm/hr의 조합처리에서는 두 토양 모두 토양유실이 크게 일어나고, 두 토양 간에 큰 차이는 없었다. 차항통 (Chahang series) 토양은 경사도, 강우강도가 적은 조합에서도 유실이 일어날 위험성이 크므로 토양관리에 주의를 요한다.

고정식 노즐 배치를 가진 대형 강우모사장치의 강우 분포 특성 분석 (Analysis on Rainfall Distribution in a Large Experimental Rainfall Simulator with Fixed Nozzle Arrangement)

  • 이찬주;김종필;이진원;김원
    • 한국산학기술학회논문지
    • /
    • 제16권12호
    • /
    • pp.8116-8127
    • /
    • 2015
  • 본 논문에서는 고정식 노즐 배치를 가진 대형 강우모사장치(KICT-ERS)와 이를 이용한 강우 분포 실험결과를 분석하였다. 강우 분사에 영향을 미치는 노즐 유량 실험 결과 실내 장치를 이용한 표준오차의 백분율은 0.15~0.38%였으며, KICT-ERS에 장착한 오차는 0.37~0.59%로 나타났다. 노즐의 분사 범위를 검토하기 위한 방사형과 삼각형 실험을 실시하였다. 방사형 실험에서 1개 노즐 분사시 균일계수가 0.348~0.657이었으나 주변 노즐을 포함할 경우 균일계수가 0.854~0.895로 높아져서 노즐 분사의 중첩에 의한 강우강도 증가 및 균일도 제고가 확인되었다. 삼각형 실험 결과의 균일계수는 0.845~0.896으로 나타났다. KICT-ERS 전체 범위에 대한 실험 결과 $1.5{\phi}$ 노즐의 1개 실험 케이스를 제외하면 모든 조건에서 균일계수는 0.7을 넘었으며, 균일계수는 강우강도가 증가함에 따라 높아지는 특성을 보였다. 기존 연구와의 비교 결과 KICT-ERS는 대체로 평균 이상의 균일계수를 제공하는 것으로 나타났다.

A study of deterioration of reinforced concrete beams under various forms of simulated acid rain attack in the laboratory

  • Fan, Yingfang;Hu, Zhiqiang;Luan, Haiyang;Wang, Dawei;Chen, An
    • Structural Engineering and Mechanics
    • /
    • 제52권1호
    • /
    • pp.35-49
    • /
    • 2014
  • This paper studies the behaviour of deteriorated reinforced concrete (RC) beams attacked by various forms of simulated acid rain. An artificial rainfall simulator was firstly designed and evaluated. Eleven RC beams ($120mm{\times}200mm{\times}1800mm$) were then constructed in the laboratory. Among them, one was acting as a reference beam and the others were subjected to three accelerated corrosion methods, including immersion, wetting-drying, and artificial rainfall methods, to simulate the attack of real acid rain. Acid solutions with pH levels of 1.5 and 2.5 were considered. Next, ultrasonic, scanning electron microscopy (SEM), dynamic, and three-point bending tests were performed to investigate the mechanical properties of concrete and flexural behaviour of the RC beams. It can be concluded that the designed artificial simulator can be effectively used to simulate the real acid rainfall. Both the immersion and wetting-drying methods magnify the effects of the real acid rainfall on the RC beams.

인공강우기에 의한 시험포장 토양유실량 모의 - 강우강도, 지표면 및 경사조건 변화 - (Simulation of Field Soil Loss by Artificial Rainfall Simulator - By Varing Rainfall Intensity, Surface Condition and Slope -)

  • 신민환;원철희;최용훈;서지연;이재운;임경재;최중대
    • 한국물환경학회지
    • /
    • 제25권5호
    • /
    • pp.785-791
    • /
    • 2009
  • Using artificial rainfall simulator, the soil loss, which is deemed as the most cause of muddy water problem among Non-point source (NPS) pollutant, was studied by the analysis of direct runoff, groundwater discharge, and soil water storage properties concerned with rainfall intensity, slope of area, and land cover. The direct runoff showed increasing tendency in both straw covered and bared soil as slope increases from 5% to 20%. The direct runoff volume from straw covered surface were much lower than bared surface. The infiltration capacity of straw covered surface increased, because the surface sealing by fine material of soil surface didn't occur due to the straw covering. Under the same rainfall intensity and slope condition, 2.4~8.2 times of sediment yield were occurred from bared surface more than straw covered surface. The volume of infiltration increased due to straw cover and the direct runoff flow decreased with decrease of tractive force in surface. To understand the relationship of the rate of direct runoff, groundwater discharge, and soil water storage by the rainfall intensity, slope, and land cover, the statistical test was performed. It shows good relationship between most of factors, except between the rate of groundwater storage and rainfall intensity.