• Title/Summary/Keyword: Railway feeder system

Search Result 57, Processing Time 0.024 seconds

Analysis of Tram Feeding System according to Train Diagram Change (열차운행 시격 변경에 따른 트램 급전계통 해석)

  • Kim, Dong-Man;Chang, Chin-Young;Kim, Jae-Moon;Kim, Yang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.634-639
    • /
    • 2015
  • In order to understand phenomenon of the electric railway power feeding system in the construction planning step, analysis of the overall system including electric characteristic of electric railway power feeding system, train running characteristic and power consumption pattern and train operation plan and gradients of railroad and curve radius is required. This paper study the feeder system by analysis of comprehensive system according to train operation plans, line impedance, running characteristic of train, electrical properties of the feeder system. In order to understand phenomenon to the feeder system of tram exactly regarding export of the field railroad preceeding actively recently.

A Theoretical Study on Voltage Drop of Auto-Transformer for Railway Vehicle Base (철도차량기지용 단권변압기의 전압강하에 대한 이론적 고찰)

  • Yu, Ki-Seong;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1723-1728
    • /
    • 2018
  • In order to investigate the voltage drop compensation effect of AT for domestic railway vehicle base, the parameters of AT voltage drop of railroad car base are Z3 (Impedance of feeder line), Xn ( Distance from railroad vehicle to AT to SS), and Dn (distance between both ATs of railway vehicle).In addition, when installed in a SSP for a railway vehicle base, there is no AT and feeder line in the railway vehicle base except for the SSP for the main line and the SSP for the railway vehicle base, so that if zero or ignored, the AC single-phase two- It can be confirmed that it becomes a form.

The Analysis of Short Current on Actual System through Power Analysis of AT Feeder System for Electric Railway (전기철도 AT급전계통 전력해석을 통한 실계통의 단락전류 분석)

  • Jung, No-Geon;Jung, Ho-Sung;Koo, Kyung-Wan;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1582-1587
    • /
    • 2014
  • In this paper, we perform a modeling for the AT Feeder system in AC electric railway and we utilize the power EMTDC program to implement about AT feeder system modeling. In addition, we study the impedance characteristics of the AT feeder system and calculated fault current and impedance according to the distance due to fault accident. Based on it's result, fault current are compared between calculating the value and simulation value in EMTDC modeling. Impedance of power system is Largest at the middle point of the system and is smallest near autotransformer, and then showed that the fault current is inversely proportional to impedance characteristics.

Analysis of Feeder wire fault Scenario on AC Railway Feeding System considering Train Position (전차 위치를 고려한 교류 전기철도 급전계통의 급전선 고장 시나리오 해석)

  • Huh, Seunghoon;Cho, Gyujung;Ryu, Kyusang;Lee, Hundo;Kim, Chulhwan;Min, Myunghwan;An, Taepung;Kwon, Seongil
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.272-273
    • /
    • 2015
  • This paper analyze scenario of feeder wire fault that occurs in the AC feeding system considering train position. The fault location of AC feeding system is calculated by measuring impedance. However, in this way, estimation error can be occurred because of tie connection, boosting current, etc. Therefore, it's hard to find fault location, so that it is required to detailed circuit analysis according to fault location. We analyze the short circuit impedance values with respect to feeder wire fault according to a train position. In this paper, PSCAD is used for modeling and analysis of AC railway feeding system.

  • PDF

The Voltage Drop Compensation of Electric Railway Feeding system using a Fuelcell System (연료전지 시스템을 이용한 전기철도 급전계통 전압강하 보상)

  • Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.342-348
    • /
    • 2015
  • In this paper, fuel cell power generation system that is being studied in recent railway field was applied to compensate for the voltage drop due to the load as driving electric vehicle. PSIM simulation program is to be used to implement the modeling of the electric railway for AC AT feeder system. For it, It was applied to the product-type single-phase PLL algorithm, step-down converter is controlled as power so as to have the fuelcell generation system. Based on it's result, a reactive power due to the catenary impedance in accordance with the current flowing is compensated as linked with fuelcell generation system which supplied the current to the power supply grid. and then its performance was confirmed that voltage compensation effect obtained at SubStation (SS), SubSectioning Post (SSP), Sectioning Post (SP).

Modelling AC Electric Railway System using the PSCAD/EMTDC (PSCAD/EMTDC를 이용한 교류 전철급전시스템 모델링)

  • Lee, Han-Min;Chang, Sang-Hoon;Han, Moon-Seob;Kim, Joo-Rak;Oh, Kwang-Hae;Lee, Chang-Mu
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.260-262
    • /
    • 2002
  • This study presents a AC electric railway system model using PSCAD/EMTDC. Ver.3.08 for circuit analysis and fault studies. This system model made by PSCAD/EMTDC is composed of feeder, contact line, rails, Scott-transformer, Auto-transformer. This model is based on four-port network which is an extension of two-port network theory. In order to verify the proposed model, each voltage of feeder-rail, contact line-rail and feeder-contact line is measured and fault studies are also simulated.

  • PDF

Modelling Voltage Variation at DC Railway Traction Substation using Recursive Least Square Estimation (순환최소자승법을 이용한 직류도시철도 변전소의 가선전압변동 모델링)

  • Bae, Chang-Han
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.6
    • /
    • pp.534-539
    • /
    • 2015
  • The DC overhead line voltage of an electric railway substation swings depending on the accelerating and regenerative-braking energy of trains, and it deteriorates the energy quality of the electric facility in the DC railway substation and restricts the powering and braking performance of subway trains. Recently, an energy storage system or a regenerative inverter has been introduced into railway traction substations to diminish both the variance of the overhead line voltage and the peak power consumption. In this study, the variance of the overhead line voltage in a DC railway substation is modelled by RC parallel circuits in each feeder, and the RC parameters are estimated using the recursive least mean square (RLMS) scheme. The forgetting factor values for the RLMS are selected using simulated annealing optimization, and the modelling scheme of the overhead line voltage variation is evaluated through raw data measured in a downtown railway substation.

A study on propagation effect and countermeasure of the harmonics generated in high speed traction (고속전철 차량에서 발생한 고조파 파급영향과 그 대책에 관한 연구)

  • Park, S.M.;Kim, J.C.;Kang, C.W.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.59-61
    • /
    • 2003
  • This paper demonstrates an analysis of harmonics at the high speed railway substation and proved on this countermeasure using the PSCAD/EMTDC simulation tool. First, high speed railway feeding system is composed using PSCAD/EMTDC electrical railway feeding system model in advance. Second, This paper applications line capacitance values as feeder-trolley, trolley-rail and feeder-rail to analysis harmonics more accuracy in advance did not application. This capacitance values calculate using the EMTP(Electro Magnetic Transient Program). Third, the tractions are arranged in the section that substation supplies power, and this paper take the simulation each case(fractions composition amount) to see harmonic propagation from traction to substation. As a result, generated harmonics at traction can confirmed that harmonics did not reduce at utility source. This harmonics have an influence on bulk power system. Finally, this paper introduces the methods of harmonics effect minimum. This paper proved harmonics reduce effect through the passive filters application.

  • PDF

Estimation of Harmonics on Power System of AC Electric Railway (교류 전기철도 전력계통의 고조파 예측량 계산)

  • 송진호;황유모
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.2
    • /
    • pp.68-79
    • /
    • 2003
  • We estimated harmonics on power system of AC railway based on quantitatively measured harmonics and investigated the need of facilities for harmonics reduction. In order to analysis harmonics which inflow into power system due to increase in collector voltages and harmonic currents generated from the train when the railway is in operation, the railway system Is sectioned into power supply, railway line, AT, sectioning Post and subsectioning post. For analysis of extension of currents resulting from the railway loads, PWM converter, VVVF inverter and the feeder system are modeled based on the dynamic node technique(DNT). In order to test the usefulness of the DNT for analysis of harmonic effects, the measured harmonic currents and harmonic magnification ratios at the S/K substation are compared with simulation results using DNT modelling, which include the results for two cases with and without filters for suppression of harmonic currents. When 8 cars(4M4T) are in operation, the total sum of harmonic currents resulting from the train at M and T phases, which inflow into the substation along with the railway line, is calculated. Using the harmonics analysis program for railway feeder system with these data, the total harmonic distortion factor(710) at the outgoing point of KEPCO substation is computed. The calculation shows that when the maximum THD at the receiving point of H/K substation was 0.0443% which is much lower than 1.5% which is the allowable value of KEPCO at 154kV as well as IEEE-519 above 132kV This result indicates that any measure for harmonics reduction in Incheon International Airport Railway is not needed.

A Study on DC Offset Removal using Low-Pass Filter in AT Feeder System for Electric Railway (전기철도 AT급전계통에 Low-Pass Filter를 이용한 직류옵셋 제거에 관한 연구)

  • Lee, Hwan;Jung, No-Geon;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1108-1114
    • /
    • 2016
  • The cause of failure in the AT feeding system is divided into grounding, short-circuit of feeding circuit and internal faults of the railway substation. Since the fault current is very high, real-time current is detected and the failure must be immediately removed. In this paper, a new DC offset elimination filter that can remove component to decrease in the form of exponential function using low-pass filter was proposed in order to extract the fundamental wave from distorted fault current. In order to confirm the performance of the proposed filter method, AT feeder system was modelled by simulation tool and simulations were performed under various conditions such as fault location, fault resistance and fault voltage phase angle in case of trolley-rail short-circuit fault. When applying the proposed DC-offset removal method, it can be seen that the phase delay and gain error did not appear.