• Title/Summary/Keyword: Railway axle

Search Result 136, Processing Time 0.028 seconds

Evaluation of Residual Stress of railway wheel (철도차량 차륜의 잔류응력 평가)

  • 서정원;구병춘;이동형;정흥채
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.208-213
    • /
    • 2002
  • Railway wheel and axle are the most critical components in railway system. A wheel and axle failure can cause a derailment with its attendant loss of life and property. The service conditions of railway vehicles have become severe in recent years due to a general increase in operating speeds. Therefore, more precise evaluation of wheelset strength and safety has been desired. Damages of railway wheel are a spatting by wheel/rail contact and thermal crack by braking heat etc. One of the main source of damage is a residual stress. therefore it is important to evaluate exactly. A Residual stress of wheel is formed at the process of heat treatment when manufacturing. it is changed by contact stress developed by wheel/rail contact and thermal stress from heat induced in braking. The objective of this paper is to estimate the variation and magnitude of the residual stress of railway wheel.

  • PDF

Performance Evaluation of Wheel Detection Sensor Using an Inductive Proximity Sensor for The High Speed Railway (자기유도형 근접센서를 활용한 고속철도용 차륜검지센서 성능 평가)

  • Lee, Kwang-Hee;Lee, Jong-Hyun;Suh, Ki-Bum;Yoon, Suk-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.895-901
    • /
    • 2016
  • Nowadays, the axle counter has been developed to the wide range of the track circuit blocks as well as the wheel detection device. The axle counter, as becoming an important device for the high speed railway, must be guaranteed in accordance with the safety. With considering the safety and the high speed, performance evaluation a wheel detection sensor is described in this paper. To increase the safety, digital proximity sensor instead of analog is employed in the wheel detection sensor. Therefor the wheel detection sensor can minimize noisy signals caused by the harsh railway environments. And, to meet the high speed railway requirements, the performance of the wheel detection sensor is also successfully verified using the speed simulator at the velocity 500Km/h.

Finding-out the Natural Frequency of the Axle Gearbox Suspension System of the High-speed Train (고속전철 액슬 기어박스 현가계의 고유 진동수 측정)

  • 최진욱;차수덕;김용기;이태화
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.163-170
    • /
    • 2001
  • Axle Gearbox of the High Speed Train has rotational degree of freedom centered on the Axle Shaft Center Line, and constrained by the Reaction Arm connected to the Bogie Frame via Resilient Ring made of Rubber. This System is laid on the Power Train and can influence on the Power transmitted from Motor to Axle. The stiffeness of the Resilient Ring have to be selected for the Natural Frequency of this System do not overlap with the Teeth-mating Frequency. To confirm the Design Parameters, Calculation and Experiment were executed and compared.

  • PDF

On a Simplified Measurement of Rail Irregularity by Axle-box Accelerometers (축상 진동가속도계를 이용한 궤도불규칙의 간이검측에 관한 연구)

  • Lee, Jun-Seok;Choi, Sung-Hoon;Kim, Sang-Soo;Park, Choon-Soo
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.989-995
    • /
    • 2010
  • This paper is focused on a simplified measurement of rail irregularity by some axle-box accelerometers for high-speed rail condition monitoring with in-service high-speed trains. Generally, the rail condition monitoring has been done by a special railway inspection vehicle with a 10m versine method. But, the monitoring method needs some expensive measurement system, and have been performed only at night due to its speed limit. In this research, a simplified measurement of rail irregularity using axle-box accelerometers is proposed to monitor the rail condition with in-service high-speed trains. The acceleration is measured by using two accelerometers on a axle-box, and stored in an on-board data acquisition system. The displacement is estimated from the acceleration data by a combination of Kalman filter and the frequency selective filter. The estimated results are compared with the measurement from a laser rail inspection system which is near the axle-box. From the comparison, the proposed method shows promise as a tool for the simplified measurement of rail irregularity at high-speed.

  • PDF

A Study on the contact force calculation by bending load of axle of rolling stocks (철도차량 차축의 굽힘하중에 의한 차륜/레일 접촉력 계산에 관한 연구)

  • Ham, Young-Sam
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.481-484
    • /
    • 2008
  • The important factor to evaluate the running safety of a railway vehicle would be the interaction force between wheel and rail(derailment coefficient), for which is one of important factors to check the running safety of a railway vehicle that may cause a tragic accident. Element that analyze derailment coefficient is consisted of wheel load and lateral force. In this paper, studied about method that calculate vertical force(wheel load) by bending load of axle in rolling stocks.

  • PDF

Development of KNR electric locomotive (한국형 신형전기기관차 개발)

  • 전훈종;박만수;박두만
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.214-219
    • /
    • 2002
  • The electric locomotive make a development by using as a trial petition way on the basis of finding for several years in 1996 and the electric locomotive in KNR railway electrification section of AC25KV 60Hz, can couple with passenger train of 700 ton doing running possibility from evenness to maximum running speed 140Km/h, Specially, propulsion equipment operates three phase AC motor that behaves axle control by VVVF inverter and affords higher axle per tractive effort as behaving control by SIBAS32 that up-to-date technology is integrated. Also, new style electric locomotive is designed so that can run in -35∼45 climatic condition.

  • PDF

A Study of the Apply Proximity Sensor for Improved Reliability Axle Detection (열차 차축검지 신뢰성 향상을 위한 근접센서 방식 Axle Counter 적용 연구)

  • Park, Jae-Young;Choi, Jin-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5534-5540
    • /
    • 2015
  • This In the railway signaling system, applications of axle counter in addition to track circuit goes on increasing for detecting train position. Consequently, this paper compares sensor methods of axle counter with between geo-magnetism method and proximity sensor method. And it presents differences and results, to improve reliabilities of train detection and axle counting. Also, this article presents an applied result which is based on field experience, with regard to installation, considering attachment condition of sensor part for accurate axle counting. This study acquires expandability that is able to perform not only axle counting function but also various other functions (direction detection of train, speed detection of train, and so on). It was a result of a change of design in order to judge phase difference of sensors, to improve reliability of axle counting. Furthermore, it does not subordinate to characteristics (type, weight of train). And it is confirmed that the omission of axle counting was not occurred in 350km/h. This was the result of Lab test after the construction of transfer equipment of trial axle and Test Bed for axle counting. Both of them are self-productions. Through this, it prepares foundation which is able to apply not only to train detection but also to speed of passing trains, formation number of trains, detector locking condition - when the train passes the section of switch point, and level crossing devices. Furthermore, it would be judged to contribute safety train operation if proximity sensor method applies to the whole railway signaling system from now on.

Slip/Slide Detection Method for the Railway Vehicles using Rotary Type Speed Sensor (회전형 속도검출기를 사용한 철도차량에서 공전, 활주의 검출방법)

  • Lee, Eul-Jae;Kim, Young-Seok;Yoon, Yong-Ki;Lee, Jae-Ho;Ryu, Sang-Hwan;Jeong, Rak-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.405-407
    • /
    • 2000
  • The most generally implemented method to detect the ground speed of the railway vehicles is to use the rotary type speed sensor attached to wheel axle. The Slip or sliding phenomenon on the railway vehicles occurs frequently caused by the weak viscosity of the wheel. Thus, precisely to control the car, the slip/sliding detection system is required. In this paper we proposed for the speed data management system, which uses rotary type speed sensor. Proposed speed management system can detect the slip/sliding with wheel axle as well as correct the generated speed error during in error time, to provide accurate speed and precise location data. The effectiveness for adapting to the railway system is clarified by the computer simulation.

  • PDF

Development of single axle bogie (1축 대차의 개발)

  • 양희주;임용규;김진태;오형식;오택렬
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.125-134
    • /
    • 2000
  • This paper presents the results of vehicle dynamics simulation for development of single axle bogie for freight vehicle. Those results consists of hunting stability, ride comfort and curving performance such as derailment ratio, unloading ratio. Dynamic behaviors of vehicle having single axle bogie is carried out using the multi-body dynamics simulation program(VAMPIRE). The results of analysis meet the criteria proposed by Korean National Railroad(KNR) and Korea Railroad Research Institute(KRRI).

  • PDF

Study on Convergence Technique through Structural Analysis on the Axle of Railway Vehicle (철도 차량의 축에 대한 구조 해석을 통한 융합 기술연구)

  • Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.1
    • /
    • pp.93-101
    • /
    • 2015
  • As the axle at the vehicle of railway has the important role for safe running, the strength, and impact-proof, safety factor, stress and deformation must be considered. There are the simulation models of 1 and 2 in this study. These models are investigated by performing the convergence technique through the design, the structural and fatigue analyses with CATIA and ANSYS. As the maximum deformation and equivalent stress of model A are lower than those of model B, model A has more durability than model B. The durability to prevent the damage can be investigated by applying the result of this study into the part design of the vehicle of rail road. And it is possible to be grafted onto the convergence technique at design and show the esthetic sense.