• Title/Summary/Keyword: Railroad surface

Search Result 221, Processing Time 0.035 seconds

Development of a trench shield machine for the near-surface railway construction (저심도 철도 건설을 위한 트렌치 쉴드 장비 개발연구)

  • Lee, So-Oh;Sagong, Myung;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.175-187
    • /
    • 2015
  • In this paper, the development of trench shield machine for near-surface railway construction were presented. The Near-surface railway can be constructed by cut and cover construction method, because it is installed at the depth of 5~7 m below roads. The cut and cover construction method mostly use temporary supports. The limitation of the cut and cover method is high installation cost and long construction period. To overcome these disadvantages, development of the trench shield machine is proposed and expected to shorten the construction time and cost of near-surface railway system. The sliding retaining wall of trench shield equipment replaces the role of temporary support (solider piles and lagging) and excavator equiped to the bottom front of the machine shorten the excavation time. This paper deals with design of the bit attached to the excavator and required capacity of the motor.

Effects of Limestone Powder and Silica Fume on the Hydration and Pozzolanic Reaction of High-Strength High-Volume GGBFS Blended Cement Mortars (고강도 고함량 고로슬래그 혼합 시멘트 모르터의 수화 및 포졸란 반응에 미치는 석회석 미분말과 실리카퓸의 영향)

  • Jeong, Ji-Yong;Jang, Seung-Yup;Choi, Young-Cheol;Jung, Sang-Hwa;Kim, Sung-Il
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.127-136
    • /
    • 2015
  • To evaluate the effects of limestone powder and silica fume on the properties of high-strength high-volume ground granulated blast-furnace slag (GGBFS) blended cement concrete, this study investigated the rheology, strength development, hydration and pozzolanic reaction characteristics, porosity and pore size distribution of high-strength mortars with the water-to-binder ratio of 20, 50 to 80% GGBFS, up to 20% limestone powder, and up to 10% silica fume. According to test results, compared with the Portland cement mixture, the high-volume GGBFS mixture had much higher flow due to the low surface friction of GGBFS particles and higher strength in the early age due to the accelerated cement hydration by increase of free water; however, because of too low water-to-binder ratio and cement content, and lack of calcium hydroxide content, the pozzolanic reactio cannot be activated and the long-term strength development was limited. Limestone powder did not affect the flowability, and also accelerate the early cement hydration. However, because its effect on the acceleration of cement hydration is not greater than that of GGBFS, and it does not have hydraulic reactivity unlikely to GGBFS, compressive strength was reduced proportional to the replacement ratio of limestone powder. Also, silica fume and very fine GGBFS lowered flow and strength by absorbing more free water required for cement hydration. Capillary porosities of GGBFS blended mortars were smaller than that of OPC mortar, but the effect of limestone powder on porosity was not noticeable, and silica fume increased porosity due to low degree of hydration. Nevertheless, it is confirmed that the addition of GGBFS and silica fume increases fine pores.

Optimum Design of the Friction Stir Welding Process on A6005 Extruded Alloy for Railway Vehicles to Improve Mechanical Properties (마찰 교반 용접된 철도 차량용 A6005 압출재의 기계적 성능 향상을 위한 최적 공법 설계)

  • Won, Si-Tea;Kim, Weon-Kyong
    • Journal of Welding and Joining
    • /
    • v.27 no.5
    • /
    • pp.81-87
    • /
    • 2009
  • Recently, extruded aluminium-alloy panels have been used in the car bodies for the purpose of the light-weight of railway vehicles and FSW(Friction Stir Welding), which is superior to the arc weldings, has been applied in the railway vehicles. This paper presents the optimum design of the FSW process on A6005 extruded alloy for railway vehicles to improve its mechanical properties. Rotational speed, welding speed and tilting angle of the tool tip were chosen as design parameters. Three objective functions were determined; maximizing the tensile strength, minimizing the hardness and maximizing the difference between the normalized tensile strength and hardness. The tensile tests and the hardness tests for fifteen FSW experiments were carried out according to the central composite design table. Recursive model functions on three characteristic values, such as the tensile strength, the hardness difference(${\Delta}Hv$) and the difference of normalized tensile strength and ${\Delta}Hv$, were estimated according to the classical response surface analysis methodology. The reliability of each recursive function was verified by F-test using the analysis of variance table. Sensitivity analysis on each characteristic value was done. Finally, the optimum values of three design parameters were found using Sequential Quadratic Programming algorithm.

A Dynamic Behavior of Rubber Component with Large Deformation (대변형을 하는 고무 부품의 동적 거동)

  • Cho Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.6
    • /
    • pp.536-541
    • /
    • 2005
  • Large displacement and rigidity about rubber component are expected by nonlinear and large deformation analysis in this study. Rubber is also used by the model of Mooney-Rivlin and the self contact between rubbers is established. There is the friction between rigid body and rubber, wall and floor. The nonlinear simulation analysis used in this study is expected to be widely applied in design, analysis and development of several rubber components which are used in automotive, railroad, and mechanical elements etc. By utilizing this method, time and cost can also be saved in developing new rubber product. The analysis of rubber components requires special material modeling and non-linear finite element analysis tools that are quite different from those used for metallic parts. The objective of this study is to analyze the rubber component with large deformation and non-linear properties.

  • PDF

Enhancement of Subgrade Stiffness Profiling by Incorporating Rayleigh and Love Waves into the Common-Array-Profiling(CAP) SASW Technique (레일레이파.러브파의 동시활용과 CAP SASW 기법 적용에 의한 지반 전단강성 평가의 고품질화)

  • Chang, Dae-Woo;Joh, Sung-Ho;Kang, Tae-Ho;Koh, Hak-Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.338-345
    • /
    • 2005
  • Recently, surface-wave methods have been widely used for site investigation due to economic advantage and improved reliability. Specially, the Spectral-Analysis-of-Surface-Wave (SASW) method has been used to evaluate soil properties in geotechnical engineering. In determination of subgrade stiffness by SASW measurements, only the vertical Rayleigh waves have been used. This study proposed a framework to determine shear-wave velocity profiles by using vertical and horizontal Rayleigh waves and Love wave all together. In addition, the Common-Array-Profiling(CAP) SASW method was employed, which subgrade stiffness of profile the local material under two fixed receivers. The procedure proposed in this study was verified by comparing the shear-wave velocity profiles with the shear-wave velocity profiles of downhole testing at two geotechnical sites.

  • PDF

The Study of Operation provision for lightrail of tram formats (노면전철형식의 경량전철 운전규정에 관한 연구)

  • Lee, Soo-Hwan;Kim, You-Ho;Lee, Hoon-Koo;Pyeon, Seon-Ho;Hwang, Hyeon-Chyeol
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1023-1024
    • /
    • 2008
  • The road surface scripture season must be interpreted with hitherto whole aspect line scripture season different. TRAM (street cars) it respects an operation it stands and back must be operated the bus which runs place and riding grade different public transportation means and to be mixed. With the numerous crossroads zebra crossing and the coat platform must operate back. The role of the operation article most is important. It undergoes the influence of traffic signal specially directly. It considers each facility etc. of the road and must construct a proper equipment in him with connection method of the signal system which it follows in the middle urethra. Must secure the fixed time characteristic of the operation which road surface scripture season is efficient and expression speed and operation. In order the [le] according to interface plan with traffic signal it does to consider a traffic signal first of all. This the research of operation provision is necessary.

  • PDF

Measurement of Radiative Heat Flux Using Plate Thermometer (판열유속계를 이용한 복사열유속 측정 실험)

  • Park, Won-Hee;Yoon, Kyung-Beom
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.1
    • /
    • pp.95-98
    • /
    • 2013
  • Plate thermometers are used for measuring the radiative heat flux in high-temperature surroundings. The heat flux is calculated from the temperature measured at the back surface of the stainless steel surface of the meter. Heat fluxes from a Schmidt-Boelter gauge are measured as reference heat fluxes. A combined conductive coefficient is introduced to consider the heat loss to insulation, conduction through the stainless plate depth, and conduction from the non-uniform temperature of the plate of the plate thermometer. This coefficient is obtained using the repulsive particle swarm optimization.

Short-Array Beamforming Technique for the Investigation of Shear-Wave Velocity at Large Rockfill Dams (대형 사력댐에서의 전단파속도 평가를 위한 단측선 빔형성기법)

  • Joh, Sung-Ho;Norfarah, Nadia Ismail
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.207-218
    • /
    • 2013
  • One of the input parameters in the evaluation of seismic performance of rockfill dams is shear-wave velocity of rock debris and clay core. Reliable evaluation of shear-wave velocity by surface-wave methods requires overcoming the problems of rock-debris discontinuity, material inhomogeneity and sloping boundary. In this paper, for the shear-wave velocity investigation of rockfill dams, SBF (Short-Array Beamforming) technique was proposed using the principles of conventional beamforming technique and adopted to solve limitations of the conventional surface-wave techniques. SBF technique utilizes a 3- to 9-m long measurement array and a far-field source, which allowed the technique to eliminate problems of near-field effects and investigate local anomalies. This paper describes the procedure to investigate shear-wave velocity profile of rockfill dams by SBF technique and IRF (Impulse-response filtration) technique with accuracy and reliability. Validity of the proposed SBF technique was verified by comparisons with downhole tests and CapSASW (Common-Array-Profiling Spectral-Analysis-of-Surface-Waves) tests at a railroad embankment compacted with rock debris.

Effect of KTX Attendants' Emotional Labor on Emotional Exhaustion and Turnover Intention (KTX승무서비스 종사자의 감정노동이 감정소진과 이직의도에 미치는 영향)

  • Kim, Tae-Seon;Hur, Chan-Young;HwangBo, Jak
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.1
    • /
    • pp.71-77
    • /
    • 2013
  • This study analyzes how deep acting and surface acting, both classified as emotional labor, influence emotional exhaustion and turnover-intention for 263 KTX attendants. The followings are the summarized results of our analysis. First, the deep acting of KTX attendants does not affect emotional exhaustion, but surface acting was found to have a positive influence on emotional exhaustion. Second, the deep acting of KTX attendants had a positive impact on turnover-intention, but surface acting did not affect turnover-intention. Last, the emotional exhaustion of KTX attendants had a positive impact on turnover-intention. In conclusion, these results imply that it is important for employers to manage their employees' emotion in order to prevent turnover among KTX attendants.

A Study on the Optimization for a V-groove GMA Welding Process Using a Dual Response Method (듀얼 반응표면법을 이용한 V-그루브 GMA 용접공정 최적화에 관한 연구)

  • Park, Hyoung-Jin;Ahn, Seung-Ho;Kang, Mun-Jin;Rhee, Se-Hun
    • Journal of Welding and Joining
    • /
    • v.26 no.2
    • /
    • pp.85-91
    • /
    • 2008
  • In general, the quality of a welding process tends to vary with depending on the work environment or external disturbances. Hence, in order to achieve the desirable quality of welding, we should have the optimal welding condition that is not significantly affected by these changes in the environment or external disturbances. In this study, we used a dual response surface method in consideration of both the mean output variables and the standard deviation in order to optimize the V-groove arc welding process. The input variables for GMA welding process with the dual response surface are welding voltage, welding current and welding speed. The output variables are the welding quality function using the shape factor of bead geometry. First, we performed welding experiment on the interested area according to the central composite design. From the results obtained, we derived the regression model on the mean and standard deviation between the input and output variables of the welding process and then obtained the dual response surface. Finally, using the grid search method, we obtained the input variables that minimize the object function which led to the optimal V-groove arc welding process.