DOI QR코드

DOI QR Code

Short-Array Beamforming Technique for the Investigation of Shear-Wave Velocity at Large Rockfill Dams

대형 사력댐에서의 전단파속도 평가를 위한 단측선 빔형성기법

  • 조성호 (중앙대학교 건설환경공학과) ;
  • 나디아 (중앙대학교 토목공학과)
  • Received : 2012.10.15
  • Accepted : 2012.11.05
  • Published : 2013.02.04

Abstract

One of the input parameters in the evaluation of seismic performance of rockfill dams is shear-wave velocity of rock debris and clay core. Reliable evaluation of shear-wave velocity by surface-wave methods requires overcoming the problems of rock-debris discontinuity, material inhomogeneity and sloping boundary. In this paper, for the shear-wave velocity investigation of rockfill dams, SBF (Short-Array Beamforming) technique was proposed using the principles of conventional beamforming technique and adopted to solve limitations of the conventional surface-wave techniques. SBF technique utilizes a 3- to 9-m long measurement array and a far-field source, which allowed the technique to eliminate problems of near-field effects and investigate local anomalies. This paper describes the procedure to investigate shear-wave velocity profile of rockfill dams by SBF technique and IRF (Impulse-response filtration) technique with accuracy and reliability. Validity of the proposed SBF technique was verified by comparisons with downhole tests and CapSASW (Common-Array-Profiling Spectral-Analysis-of-Surface-Waves) tests at a railroad embankment compacted with rock debris.

대형 사력댐의 내진성능 평가에서 필히 요구되는 입력상수는 사력재료, 코아매질의 전단파 속도이다. 이를 표면파 시험으로 평가하기 위해서는 사력골재의 불연속, 매질의 비균질, 사면 경계면 등 표면파 시험결과의 신뢰도를 떨어뜨리는 조건을 극복해야 한다. 본 연구에서는 이러한 표면파시험의 한계를 극복하기 위하여 기존 빔형성기법의 원리를 응용한 SBF (Short-Array Beamforming) 기법을 제안하였다. SBF 기법은 3~9 m의 짧은 측선과 원거리 발진원을 이용함으로써, 빔형성기법 고유의 장점인 측정자료의 자동화분석뿐만 아니라 근접장 문제의 해결, 국부적 이상대의 발견 등의 기능을 가지도록 개발되었다. 본 연구에서는 이러한 SBF 기법과 IRF(Impulse-Response Filtration) 기법을 활용하여 대형 사력댐의 전단파속도를 신뢰성 있게 평가하는 방법을 정립하였다. 정립된 기법은 사력댐의 사력재료와 유사한 암버럭으로 매립 성토된 철도 노반에서 다운홀 시험, CapSASW (Common-Array-Profiling SASW) 시험과의 비교를 통하여 그 신뢰성과 실용성을 검증하였다.

Keywords

References

  1. Joh, S.-H., Jang, D. W., Kang, T.-H., Lee, I.-H. (2005). "Evaluation of Stiffness Structure for Geological Segmentsby CAP SASW Technique," Journal of Korean Geotechnical Society, Korean Geotechnical Society, Vol. 21, No. 4, p.71-81 (in Korean).
  2. Dziewonski, A., Bloch. S, and Landisman, M. (1969). "A technique for analysis of transient seismic signals," Bull. Seism. Soc. Am. Vol. 59, No. 1, pp. 427-444.
  3. Fuster, J. J. (2004). A hardware architecture for real-time beamforming, University of Florida, Master's thesis, 126 pp.
  4. Joh, S.-H. (1996). Advances in interpretation and analysis techniques for Spectral-Analysis-of-Surface-Waves (SASW) method. Ph.D. dissertation, The University of Texas at Austin.
  5. Joh, S.-H. (2012). "Refined Beamformer for Directional Surface- Wave Measurements at Geotechnical Structures," Presented at 91th Annual Meeting of the Transportation Research Board.
  6. Johnson, D. H., and Dedgeon, D. E. (1993). Array signal processing, PTR Prentice-Hall, Englewood Cliffs, N. J.
  7. Kausel, E. and Roesset, J. M. (1981). "Stiffness matrices for layered soils," Bull. Seismol. Soc. Am. Vol. 71, pp.1743-1761.
  8. Kausel, E. and Peek, R. (1982). "Dynamic loads in the interior of a layered stratum: An explicit solution," Bull. Seismol.. Soc. Am. Vol. 72, No. 6, pp.1459-1508.
  9. Norfarah Nadia Ismail (2012). Refinement of Beamforming Technique for Practical and Reliablie Stiffness Profiling. Master Thesis, Chung-Ang University. p.145.
  10. Curtis technology, Principles of sonar beamforming, Retrieved at July 26, 2011 from http://www.curtistech.co.uk/papers/beamform.pdf.
  11. Stokoe, K. H., Joh, S.-H. , Woods, R. D. (2004). "Some contributions of in situ geophysical measurements to solving geotechnical engineering problems," Proceedings of the second international site characterization, Vol. 1, Porto, Portugal, pp. 19-42.
  12. Stokoe, K. H., II, Wright, S. G., Bay, J. A., and Roesset, J. M. (1994). "Characterization of geotechnical sites by SASW method," Geophysical Characteristics of Sites, ISSMFE, Technical Committee 10 for XIII ICSMFE, International Science Publishers, New York, pp. 15-25.
  13. Zywicki, D. J. and Rix, G. J. (2005). "Mitigation of near-field effects for seismic surface wave velocity estimation with cylindrical beamformers," Journal of geotechnical and geoenvironmental engineering, Vol. 131, No. 8, pp. 970-977. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:8(970)
  14. Zywicki, D. J. and Malladi, S. (2007). "Forward-backward cylindrical beamformer and geometric spreading weighting for seismic surface wave parameter estimation," Proceedings of Geo-Denver 2007, pp. 1-10.
  15. Yoon, S. and Rix, G. J. (2009). "Near-Field Effects on Array-Based Surface Wave Methods with Active Sources," Journal of Geotechnicaland Geoenvironmental Engineering, Vol. 135, No. 3, pp. 399-406. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:3(399)

Cited by

  1. Shear wave velocity profiles of fill dams vol.104, 2018, https://doi.org/10.1016/j.soildyn.2017.10.013