• Title/Summary/Keyword: Raft-pile-soil interaction

Search Result 17, Processing Time 0.025 seconds

Effect of raft and pile stiffness on seismic response of soil-piled raft-structure system

  • Saha, Rajib;Dutta, Sekhar C.;Haldar, Sumanta
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.161-189
    • /
    • 2015
  • Soil-pile raft-structure interaction is recognized as a significant phenomenon which influences the seismic behaviour of structures. Soil structure interaction (SSI) has been extensively used to analyze the response of superstructure and piled raft through various modelling and analysis techniques. Major drawback of previous study is that overall interaction among entire soil-pile raft-superstructure system considering highlighting the change in design forces of various components in structure has not been explicitly addressed. A recent study addressed this issue in a broad sense, exhibiting the possibility of increase in pile shear due to SSI. However, in this context, relative stiffness of raft and that of pile with respect to soil and length of pile plays an important role in regulating this effect. In this paper, effect of relative stiffness of piled raft and soil along with other parameters is studied using a simplified model incorporating pile-soil raft and superstructure interaction in very soft, soft and moderately stiff soil. It is observed that pile head shear may significantly increase if the relative stiffness of raft and pile increases and furthermore stiffer pile group has a stronger effect. Outcome of this study may provide insight towards the rational seismic design of piles.

Soil -structure interaction analysis of a building frame supported on piled raft

  • Chore, H.S.;Siddiqui, M.J.
    • Coupled systems mechanics
    • /
    • v.5 no.1
    • /
    • pp.41-58
    • /
    • 2016
  • The study deals with physical modeling of a typical building frame resting on pile raft foundation and embedded in cohesive soil mass using finite element based software ETABS. Both- the elements of superstructure and substructure (i.e., foundation) including soil is assumed to remain in elastic state at all the time. The raft is modelled as a thin plate and the pile and soils are treated as interactive springs. Both- the resistance of the piles as well as that of raft base - are incorporated into the model. Interactions between raft-soil-pile are computed. The proposed method makes it possible to solve the problems of uniformly and large non-uniformly arranged piled rafts in a time saving way using finite element based software ETABS. The effect of the various parameters of the pile raft foundation such as thickness of raft and pile diameter is evaluated on the response of superstructure. The response included the displacement at the top of the frame and bending moment in columns. The soil-structure interaction effect is found to increase displacement and increase the absolute maximum positive and negative moments. The effect of the soil- structure interaction is observed to be significant for the type of foundation and soil considered in the present study.

An Study of Behavior of Granuler soil for the Piled raft from the Model Test (모형실험을 이용한 사질토지반에서의 Piled raft 거동특성에 대한 연구)

  • Kwon, Oh-Kyun;Lee, Whoal;Kim, Jin-Bok;Lee, Seung-Hyun;Oh, Se-Boong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.358-365
    • /
    • 2002
  • In this paper the model tests have been conducted and the results were compared with those by the theoretical methods to study the behaviors of the piled raft. The size of model box is 2.2m${\times}$2m${\times}$2m. The raft is made of rigid steel plate and piles are made of steel pipes. Generally the bearing capacity of group piles is designed with only the pile capacities, which is Ignored the bearing capacity of raft. But the uncertainty of pile-raft-soil interaction leads to conservative design ignoring the bearing effects of raft. In the case of considering the bearing capacity of raft, the simple sum of bearing capacity of raft and that of each pile cannot be the bearing capacity of piled raft. Because the pile-raft-soil interaction affects the behavior of piled raft. Thus the effects of pile-raft-soil interaction are very important in the optimal design. In this paper, the behaviors of piled raft are studied through model tests of 2${\times}$2, 2${\times}$3, and 3${\times}$3 pile groups. The spacing between piles is changed in the model tests. And the behaviors of free standing and piled raft are also studied.

  • PDF

An Experimental Study of Piled Raft Footing on Loose Sands (느슨한 모래지반에서의 말뚝지지 전면기초에 대한 실험적 연구)

  • Kwon, Oh-Kyun;Lee, Whoal;Lee, Seung-Hyun;Oh, Se-Boong;Jang, Hak-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.439-446
    • /
    • 2003
  • In this paper the model tests have been conducted and the results are compared with those by the theoretical methods to study the behaviors of the piled raft. The size of model box is 2.2m${\times}$2m${\times}$2m. The raft is made of rigid steel plate and piles made of steel pipes. Generally the bearing capacity of group piles is designed with only the pile capacities, and the bearing capacity of raft is ignored. But the uncertainty of pile-raft-soil interaction leads to conservative design ignoring the bearing effects of raft. In the case of considering the bearing capacity of raft, the simple sum of bearing capacity of raft and that of each pile cannot be the bearing capacity of piled raft. Because the pile-raft-soil interaction affects the behavior of piled raft. Thus the effects of pile-raft-soil interaction are very important in the optimal design. In this paper, the behaviors of piled raft are studied through model tests of 2${\times}$2, 2${\times}$3, and 3${\times}$3 pile groups. The spacing between piles is changed in the model tests. And the behaviors of free standing and piled raft are also studied.

  • PDF

An Experimental Study on Behavior for the Piled Raft (Piled Raft 거동특성에 관한 실험적 연구)

  • Kwon, Oh-Kyun;Lee, Seung-Hyun;Oh, Se-Boong;Lim, Jong-Seok;Lee, Whoal
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.06a
    • /
    • pp.77-89
    • /
    • 2002
  • To analyze a bearing capacity for pile groups, a number of model tests have been done and theoretical methods studied. In the case of design of group pile bearing capacity is calculated with only pile capacity. But uncertainty of bearing capacity and behavior of foundation cap(raft) leads to conservative design ignoring bearing effects of foundation cap. In the case of considering bearing capacity of foundation cap, the simple sum of bearing capacity of foundation cap and pile groups cannot be the bearing capacity of total foundation system. Since cap-pile-soil interaction affects the behavior of pile groups. Thus, understanding cap-pile-soil interaction is very important in optimal design. In this paper, the piled raft behavior is studied through model tests of 2$\times$2, 2$\times$3, 3$\times$3 pile group. Changes of behavior of pile group foundation by touching effects of foundation cap with soil are studied. Also changes of spacing between piles. Foundation cap is made of rigid steel plate and piles are made steel pipes. From this model tests, the changes of behavior changes of pile groups by touching effects of foundation cap with soil are studied.

  • PDF

PRaFULL: A method for the analysis of piled raft foundation under lateral load

  • Stacul, Stefano;Squeglia, Nunziante;Russo, Gianpiero
    • Geomechanics and Engineering
    • /
    • v.20 no.5
    • /
    • pp.433-445
    • /
    • 2020
  • A new code, called PRaFULL (Piled Raft Foundation Under Lateral Load), was developed for the analysis of laterally loaded Combined Pile Raft Foundation (CPRF). The proposed code considers the contribution offered by the raft-soil contact and the interactions between all the CPRF system components. The nonlinear behaviour of the reinforced concrete pile and the soil are accounted. As shallower soil layers are of great relevance in the lateral response of a pile foundation, PRaFULL includes the possibility to consider layered soil profiles with appropriate properties. The shadowing effect on the ultimate soil pressure is accounted, when dealing with pile groups, as proposed by the Strain Wedge Model. PRaFULL BEM code obviously requires less computational resources compared to FEM (Finite Element Method) or FDM (Finite Difference Method) codes. The proposed code was validated in the linear elastic range by comparisons with the code APRAF (Analysis of Piled Raft Foundations). The reliability of the procedure to predict piled raft performance was then verified in nonlinear range by comparisons with both centrifuge tests and computer code PRAB.

Analysis of Piled Raft Interactions in Sand with Centrifuge Test (원심모형실험을 통한 사질토 지반에서의 말뚝지지 전면기초 상호작용 분석)

  • Park, Dong-Gyu;Choi, Kyu-Jin;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.10
    • /
    • pp.27-40
    • /
    • 2012
  • In the design of a piled raft, the axial resistance is offered by the raft and group piles acting on the same supporting ground soils. As a consequence, pile - soil - raft and pile - soil interactions, occurring by stress and displacement duplication with pile and raft loading conditions, act as a key element changing resistances of the raft and group piles. In this study, a series of centrifuge model tests have been performed to compare the axial behavior of group pile and raft with that of a piled raft (having 16 component piles with an array of $4{\times}4$) in sands with different relative densities. The test results revealed that the increase of settlement resistance occurs separately with settlement by group pile - soil interactions. The axial resistance of group piles (at piled raft) increases by group pile - raft (pile cap) interactions and that of raft (at piled raft) decreases by group pile - raft (pile cap) interactions.

Optimum pile arrangement in piled raft foundation by using simplified settlement analysis and adaptive step-length algorithm

  • Nakanishi, Keiji;Takewaki, Izuru
    • Geomechanics and Engineering
    • /
    • v.5 no.6
    • /
    • pp.519-540
    • /
    • 2013
  • This paper presents an optimal design method for determining pile lengths of piled raft foundations. The foundation settlement is evaluated by taking into account the raft-pile-soil interaction. The analysis of settlement is simplified by using Steinbrenner's equation. Then the total pile length is minimized under the settlement constraint. An extended sequential linear programming technique combined with an adaptive step-length algorithm of pile lengths is used to solve the optimal design problem. The accuracy of the simplified settlement analysis method and the validity of the obtained optimal solution are investigated through the comparison with the actual measurement result in existing piled raft foundations.

Development of Three-dimensional Approximate Analysis Method for Piled Raft Foundations (말뚝지지 전면기초의 3차원 근사해석기법 개발)

  • Cho, Jae-Yeon;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.67-78
    • /
    • 2012
  • A three-dimensional approximate computer-based method, YSPR (Yonsei Piled Raft), was developed for analysis of behavior of piled raft foundations. The raft was modeled as a flat shell element having 6 degrees of freedom at each node and the pile was modeled as a beam-column element. The behaviors of pile head and soil were controlled by using $6{\times}6$ stiffness matrix. To model the non-linear behavior, the soil-structure interaction between soil and pile was modeled by using nonlinear load-transfer curves (t-z, q-z and p-y curves). Comparison with previous model and FEM analysis showed that YSPR gave similar load-displacement behaviors. Comparison with field measurement also indicated that YSPR gave a reasonable result. It was concluded that YSPR could be effectively used in analysis and design of piled raft foundations.

Evaluation of Bearing Capacity of Piled Raft Foundation on OC Clay using Centrifuge and Numerical Modeling (원심모형 실험과 수치해석을 이용한 과압밀 지반에서의 piled raft 기초의 지지력 평가)

  • Park, Jin-Oh;Choo, Yun-Wook;Kim, Dong-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.376-387
    • /
    • 2009
  • Piled raft foundation is a geotechnical composite construction to support the superstructure by pile-soil-raft interaction. General conventional design for piled raft doesn't consider the contribution of a raft. This is very conservative and requires more piles to satisfy the factor of safety. It is important to evaluate the load sharing features of piled raft. In this research, this characteristics of piled raft evaluated using both centrifuge and numerical modelings. The ultimate bearing capacity of piled raft foundation was also evaluated and predicted through comparisons of ultimate bearing capacity of single pile (SP), unpiled raft (UR), freestanding pile group (FPG) and piled raft (PR). $\xi_{pr}$ and $\eta$ were determined by centrifuge model tests to simply evaluate the ultimate bearing capacity of piled raft and bearing capacity of piled raft was predicted using the calibrated numerical model based on the centrifuge tests and laboratory tests data.

  • PDF