• Title/Summary/Keyword: Radiological safety

Search Result 550, Processing Time 0.022 seconds

Soil Radioactivity in Urban Parks of Incheon (인천지역 근린공원의 토양 방사능 농도)

  • Jun-Su, Jang;Sang-Bok, Lee;Ga-Eun, Baek;Hee-Cheol, Shin;Gyeong-Jae, Lee;Do-Hwa, Lee;Sungchul, Kim
    • Journal of radiological science and technology
    • /
    • v.46 no.1
    • /
    • pp.37-42
    • /
    • 2023
  • Most of research on environmental radioactivity is conducted in areas near nuclear power plants, so basic data about the distribution of environmental radioactivity in soil in other areas are insufficient. Therefore, in this study, divide into four categories by the land development characteristics of Incheon and the purpose of development, and confirm the stability of the Incheon through soil sample collection and gamma-ray analysis based on 40K, 137Cs and 226Ra (214Pb, 214Bi). The spectrum obtained by measuring for 80,000 seconds by using the HPGe detector was analyzed by Genie 2000 program. Soil radioactivity concentrations in urban parks of Incheon area are generally within a safe range compared to the results of the Nuclear safety and security commission. However, as 137Cs was detected in one park, which will require continuous monitoring.

The Knowledge, Attitude and Behavior on the Radiation Safety Management for Dental Hygiene Major Students (치위생(학)과 학생의 방사선안전관리에 대한 지식, 태도 및 행위)

  • Jeon, Yeo Ryeong;Cho, Pyong Kon;Han, Eun Ok;Jang, Hyon Chul;Ko, Jong Kyung;Kim, Yong Min
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.411-420
    • /
    • 2015
  • Objectives : This study tries to find the educational basis based on the radiation safety knowledge, attitudes and behaviors to check the level of radiation safety behavior in domestic students who study dental hygiene. Methods : The students of 3rd and 4th grades in 83 universities which have registered on the Korean University Education Council were involved, and they were given a questionnaire for this study. The questionnaire was provided via visit with 20 copies to each university (total 1660 copies), mail by post and e-mail. Among them, we analyzed only 723 copies that we can trust. The data were analyzed with frequency, percentage, mean, standard deviation and Pearson's correlation using the SPSS/WIN 15.0. Results : As a result, there are correlations in the students' knowledge, attitudes and behaviors regarding the radiation safety management. It means that the education which can improve the knowledge and attitudes should be applied to increase the action level of the radiation safety. In addition, the physical environment is the most closely correlated with the individual behavior, so it will be limited to improve the behavioral levels of the radiation safety if the physical environment is not prepared. Therefore, the physical environment should be supported to enhance the level of the radiation safety activity, and to increase the individual attitude level of radiation safety. Conclusions : The knowledge level of the radiation safety management is relatively lower than the attitudes level, and the behavior level is the lowest. Therefore, the education policy of the safety behavior must be enhanced. For domestic students, the educational intervention is necessary to improve their behavioral level of radiation safety management because they will be able to reduce the amount of radiation exposure of their patients in dental care after getting a job.

A Survey on the Awareness of Radiation-related Workers and Radiation Workers in the Medical Institutions According to the Dual System (의료기관의 방사선사 중 방사선 관계종사자와 방사선 작업종사자의 이원화 체계에 따른 인식도 조사)

  • Her, Mi;Ahn, Sung-Min
    • Journal of radiological science and technology
    • /
    • v.41 no.5
    • /
    • pp.479-485
    • /
    • 2018
  • Radiologic technologists working at the second and third medical institutions are classified as radiation-related workers and radiation workers according to their working departments, and are subject to double regulation by the Ministry of Health and Welfare and the Nuclear Safety Commission. We will try to understand the system of dualization and to understand the investigation of recognition. The dualized system of radiation-related workers and radiation workers includes the difference in name and terminology, the effective dose limit, the maintenance education and training of radiologic technologists, the period of medical examination, the radiation zone, dose of the woman whose pregnancy is confirmed in radiologic technologists, the qualification criteria of the safety officer, and the period of the regular inspection of the radiological equipment. In the questionnaire survey on the dualization system, there were various items showing significant differences between the radiation-related workers and radiation workers Overall, the radiation workers were more aware of the radiation workers' education and related terms than the radiation-related workers.

Evaluation of Radiation Doses of Dental Portable Equipment (치과용 이동형 방사선장치의 선량평가)

  • Park, Hoon-Hee;Kang, Byung-Sam
    • Journal of radiological science and technology
    • /
    • v.41 no.5
    • /
    • pp.445-450
    • /
    • 2018
  • We aim to evaluate safety of radiation by measuring leakage dose and patient(phantom) incident dose of ZEN-PX II dental portable equipment developed by G company. Measurement for leakage dose of equipment is conducted on the top, at the bottom, on the left, on the right and at the back. Dose measurement incident on the subject with the area dosimeter when using the phantom and measurement the leakage dose of equipment when using the phantom are evaluated. Comparing the right with the highest leakage dose as a 0 cm, 25 cm, 50 cm, 75 cm and 100 cm dose measurement at the measurement height of 100 cm, 64.2 uR was reduced to 47.3 uR in the senser mode 0.32sec. Even in film mode it was measured at 414.4 uR and about 27% lower at 162.6 uR. As the result of this study, when the irradiation time is 2 sec the right side dose is 290.5 uR and sensor mode is 0.32 sec the right side dose is 64.2 uR.

Development and Usefulness Evaluation of Virtual Reality Simulator for Education of Spatial Dose Rate in Radiation Controlled Area (방사선관리구역의 공간선량률 교육을 위한 가상현실 시뮬레이터의 개발과 유용성 평가)

  • Jeong-Min Seo
    • Journal of radiological science and technology
    • /
    • v.46 no.6
    • /
    • pp.493-499
    • /
    • 2023
  • This study developed education contents of measuring spatial dose with virtual reality simulation and applied to students majoring radiological science. The virtual reality(VR) contents with measuring spatial dose rate in the radiation controlled area was developed based on the simulation from pilot study. In this simulation, the tube voltage and tube current can be set from 60 to 120 kVp in 10 kVp steps and 10 to 40 mAs in 10 mAs increments, and the distance from source can be set from 30 to 400 cm continuously. Iron and lead shields can be placed between the source and the detector, and shielding thickness can be set by 1 mm increments ranging from 1 to 20 mm. We surveyed to students for evaluating improvement of understanding spatial dose rate between before and after education by VR simulation. The survey was conducted with 5 questions(X-ray exposure factors, effects by distance from the source, effects from using shield, depending on material and thickness of shield, concept and measuring of spatial dose rate) and all answers showed significant improvement. Therefore, this VR simulation content will be well used in education for spatial dose rate and radiation safety environments.

A Study on the Radiological Emergency Plan for Decommissioning Nuclear Power Plant

  • Hye-Jin Son;Chang-Lak Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.1
    • /
    • pp.91-104
    • /
    • 2024
  • Safe radiation management is essential not only for operational nuclear power plants but also for nuclear plants to be decommissioned. When spent nuclear fuel is present on-site, meticulous radiation emergency plans are necessary to ensure safety. In Korea, numerous radiation emergency plans have been established for operational nuclear reactors. These plans delineate distinct response mitigation measures for white, blue, and red emergencies. However, clear regulations are yet to be devised for radiation emergency plans for reactors to be decommission. Therefore, this study investigated the decommissioning plan and status of Kori unit 1 to comprehensively analyze the current status of decommissioning safety in Korea. In this study, radiation emergency plans of decommissioning nuclear power plants abroad were reviewed to confirm radiation emergency action levels. Furthermore, radioactive waste treatment facilities, to be used for decommissioning reactors in Korea were evaluated. Moreover, the study assessed emergency plans (especially, emergency initiating conditions) for operational nuclear power plants in Korea for potential use in the decommissioning phase. This study proposed an emergency initiating condition that can be used for decommissioning reactors in Korea. Considering the anticipated introduction of plasma torch melting facility in Korea, this study examined the conditions of radiation emergency plans can be altered. This study identified effective measures and guidelines for managing radiological emergency initiating conditions, and effective decommissioning of nuclear power plants in Korea.

An Analysis of the Awareness and Performance of Radiation Workers' Radiation/Radioactivity Protection in Medical Institutions: Focused on Busan Regional Medical Institutions (의료기관 방사선작업종사자들의 방사선/능 방어에 대한 인식도 및 수행도 분석: 부산지역 의료기관을 중심으로)

  • Park, Cheol Koo;Hwang, Chul Hwan;Kim, Dong Hyun
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.101-108
    • /
    • 2017
  • The purpose of this study was to investigate safety management awareness and behavioral investigation of radiation/radioactivity performance defenses of radiation workers' in medical institutions. Data collection consisted of 267 radiation workers working in medical institutions using structured questionnaires. As a result, it was analyzed that radiation safety management awareness and performance were high in 40s, 50s group and higher education group. The analysis according to the radiation safety management knowledge was analyzed that the "Know very well" group had higher scores on awareness and performance scores. The analysis according to the degree of safety management effort showed the high awareness scale and the performance scale in the group "Receiving various education or studying the safety management contents through book". The correlations between the sub-factors showed the highest positive correlation between perceived practician and personal perspective and perceived by patient and patient's caretaker perspective. Therefore, radiation safety management for workers, patients, and patient's caretaker should be conducted through continuous education of radiation safety management through various routes of radiation workers working at medical institutions.

Effects of Claustrophobia, Vital Signs on Psychological Anxiety of the Patients during MRI Examination(In Patient Safety Accident) (MRI 검사 시 환자의 심리적 불안감이 폐쇄공포 및 활력징후에 미치는 영향(환자안전사고에 있어서))

  • Kim, Jae-Cheon;Bae, Seok-Hwan;Kim, Yong-Kwon;Lee, Moo-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.4
    • /
    • pp.231-240
    • /
    • 2015
  • In this study, to find out the effect of psychological anxiety of the patients during MRI examination on the claustrophobia and vital signs, As for a study tool, to measure Anxiety Sensitivity Index(ASI), Kamsung Evaluation Index of Life Environmental Noise(KEI), Diagnostic and Statistical Manual of Mental Disorders(DSM-IV) was used, and for vital signs, blood pressure and pulse rate were measured pre and post MRI examination. In conclusion, it was indicated that though the effect of the general characteristics, psychological anxiety, on noise sensitivity and claustrophobia was small, the psychological anxiety of the patients during MRI examination affected claustrophobia and vital signs.

Evaluation of radiological safety according to accident scenarios for commercialization of spent resin mixture treatment device

  • Choi, Woo Nyun;Byun, Jaehoon;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2606-2613
    • /
    • 2022
  • Spent resin often exceeds radiation limits for safe disposal, creating a need for commercial-scale treatment techniques to reduce resin radioactivity. In this study, the radiological safety of a commercialized spent resin treatment device with a treatment capacity of 1 ton/day was evaluated. The results confirm that the device is radiologically safe in the event of an accident. This device desorbs 14C from the spent resin, allowing disposal as low-level waste instead of intermediate-level waste. The device also reduces overall waste by recycling the extracted 14C. Potential accident scenarios were explored to enable dose assessments for both internal and external exposure while preventing further spillage of the device and processing the spilled resin. The scenarios involved the development of a surface fracture on the resin mixture separator and microwave systems, which were operated under pressure and temperature of 0-6 bar and 0-150 ℃, respectively. In the case of accidents with separator and microwave device, the maximum allowable working time of worker were derived, respectively, considering external and internal exposures. When wearing the respirator corresponding to APF 50, in the case of the microwave device accident scenario, the radiological safety was confirmed when the maximum worker worked within 132.1 h.

Activity concentrations and radiological hazard assessments of 226Ra, 232Th, 40K, and 137Cs in soil samples obtained from the Dongnam Institute of Radiological & Medical Science, Korea

  • Jieun Lee;HyoJin Kim;Yong Uk Kye; Dong Yeon Lee;Wol Soon Jo;Chang Geun Lee;Jeung Kee Kim;Jeong-Hwa Baek;Yeong-Rok Kang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2388-2394
    • /
    • 2023
  • The radioactivity concentration of environmental radionuclides was analyzed for soil and sand at eight locations within a radius of 255 m centered on the Dongnam Institute of Radiological & Medical Science (DIRAMS), Korea. The average activity concentrations of 40K, 137Cs, 226Ra, and 232Th were 661.1 Bq/kg-dry, 0.9 Bq/kg-dry, 21.9 Bq/kg-dry, and 11.1 Bq/kg-dry, respectively. The activity of 40K and 137Cs was lower than the 3-year (2017-2019) average reported by the Korea Institute of Nuclear Safety, respectively. Due to the nature of granite-rich soil, the radioactivity of 40K was 0.6-fold higher than in other countries, while 137Cs was in the normal fluctuation range (15-30 Bq/kg-dry) of the concentration of radioactive fallout from nuclear tests. The activity of 226Ra and 232Th was lower than in Korean soils reported by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). The average activity concentrations of 232Th and 40K for the soil and sand samples from DIRAMS were within the range specified by UNSCEAR in 2000. The radium equivalent activity and internal and external hazard index values were below the recommended limits (1 mSv/y). These radionuclide concentration (226Ra, 232Th, 40K, and 137Cs) data can be used for regional environmental monitoring and ecological impact assessments of nuclear power plant accidents.