• Title/Summary/Keyword: Radiological Engineering

Search Result 794, Processing Time 0.031 seconds

INVOLVEMENT OF p27CIP/KIP IN HSP25 OR INDUCIBLE HSP70 MEDIATED ADAPTIVE RESPONSE BY LOW DOSE RADIATION

  • Seo, Hang-Rhan;Chung, Hee-Yong;Lee, Yoon-Jin;Baek, Min;Bae, Sang-Woo;Lee, Su-Jae;Lee, Yun-Sil
    • Nuclear Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.285-292
    • /
    • 2006
  • Thermoresistant (TR) clones of radiation-induced fibrosarcoma (RIF) cells have been reported to show an adaptive response to 1cGy of low dose radiation, and HSP25 and inducible HSP70 are involved in this process. In this study, to further elucidate the mechanism by which HSP25 and inducible HSP70 regulate the adaptive response, HSP25 or inducible HSP70 overexpressed RIF cells were irradiated with 1cGy and the cell cycle was analyzed. HSP25 or inducible HSP70 overexpressed cells together with TR cells showed increased G1 phase after 1cGy irradiation, while RIF cells did not. $[^3H]-Thymidine$ and BrdU incorporation also indicated that both HSP25 and inducible HSP70 are involved in G1 arrest after 1cGy irradiation. Molecular analysis revealed upregulation of p27Cip/Kip protein in HSP25 and inducible HSP70 overexpressed cells, and cotransfection of p27Cip/Kip antisense abolished the induction of the adaptive response and 1cGy-mediated G1 arrest. The above results indicate that induction of an adaptive response by HSP25 and inducible HSP70 is mediated by upregulation of p27Cip/Kip protein, resulting in low dose radiation-induced G1 arrest.

Protective Activity Against Oxidative Stress of Plants Indigenous to Korea

  • Jung Myung Sun;Kang Kyoung Ah;Zhang Rui;Chae Sungwook;Yoo Byoung-Sam;Yang Young Taek;Lee Nam Ho;Park Jae Woo;Hyun Jin Won
    • Toxicological Research
    • /
    • v.21 no.4
    • /
    • pp.279-284
    • /
    • 2005
  • We have screened the cytoprotective effect against $H_2O_2$ and $\gamma-ray$ radiation induced oxidative stress from 32 Korean plants. Betula ermani var.saitoana (caulis, leaves), Rosa wichuraiana (caulis), Sorbus commixta (caulis), Weigela florida (leaves), Cirsium rhinoceros (whole plant), and Viburnum erosum (caulis) were found to scavenge 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical and intracellular reactive oxygen species (ROS). As a result, extracts of six plants reduced cell death of Chinese hamster lung fibroblast (V79-4) cells induced by $H_2O_2$ treatment. In addition, these extracts protected cell death of V79-4 cells damaged by $\gamma-ray$ radiation. In addition, these extracts scavenged ROS generated by radiation. Taken together, the results suggest that Betula ermani var. saitoana, Rosa wichuraiana, Sorbus commixta, Weigela florida, Cirsium rhinoceros, and Vibumum erosum protect V79-4 cells against oxidative damage by radiation through scavenging ROS.

Development and Performance Evaluation of the First Model of 4D CT-Scanner

  • Endo, Masahiro;Mori, Shinichiro;Tsunoo, Takanori;Kandatsu, Susumu;Tanada, Shuji;Aradate, Hiroshi;Saito, Yasuo;Miyazaki, Hiroaki;Satoh, Kazumasa;Matsusita, Satoshi;Kusakabe, Masahiro
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.373-375
    • /
    • 2002
  • 4D CT is a dynamic volume imaging system of moving organs with an image quality comparable to conventional CT, and is realized with continuous and high-speed cone-beam CT. In order to realize 4D CT, we have developed a novel 2D detector on the basis of the present CT technology, and mounted it on the gantry frame of the state-of-the-art CT-scanner. In the present report we describe the design of the first model of 4D CT-scanner as well as the early results of performance test. The x-ray detector for the 4D CT-scanner is a discrete pixel detector in which pixel data are measured by an independent detector element. The numbers of elements are 912 (channels) ${\times}$ 256 (segments) and the element size is approximately 1mm ${\times}$ 1mm. Data sampling rate is 900views(frames)/sec, and dynamic range of A/D converter is 16bits. The rotation speed of the gantry is l.0sec/rotation. Data transfer system between rotating and stationary parts in the gantry consists of laser diode and photodiode pairs, and achieves net transfer speed of 5Gbps. Volume data of 512${\times}$512${\times}$256 voxels are reconstructed with FDK algorithm by parallel use of 128 microprocessors. Normal volunteers and several phantoms were scanned with the scanner to demonstrate high image quality.

  • PDF

Analysis of Physical Properties for Various Compositions of Reusable LMG and LCV Micelle Gel

  • Kang, Jin Mook;Lee, Dong Han;Cho, Yu Ra;Hwang, Seon Bung;Ji, Young Hoon;Ahn, So Hyun;Keum, Ki Chang;Lee, Re Na;Cho, Sam Ju;Noh, Insup
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.175-179
    • /
    • 2016
  • In this study, we evaluated the reusable leuco malachite green (LMG) micelle gel properties dependent on various components of chemical concentration and compared with leuco crystal violet (LCV). The gels were delivered to 10, 20, 30, 40 and 50 Gy at 6 MV photon beam from linear accelerator and analyzed using spectrophotometry. We confirmed that the reusable LMG and LVC absorbance wavelength peak were made up at 630 nm and 600 nm respectively. The transparency of reusable LMG decreased with higher amount of trichloroacetic acid (TCAA) and lower reusable LMG dyes. 1 mM reusable LMG was the lowest transparency. The sensitivity was increased depending on lower trichloroacetic acid (TCAA) concentrations and the amount of suitable surfactant (Triton X-100), which was found to be 7 mM. However, we were not able to investigate sensitivity effects factor from reusable LMG dyes. The gel dosimeter containing 16 mM TCAA, 7 mM Triton X-100 gel dosimeter showed the highest sensitivity at $0.0021{\pm}0.0001cm^{-1}.Gy^{-1}$. The sensitivity of LCV was found to be higher than reusable LMG at $0.0037{\pm}0.0005cm^{-1}.Gy^{-1}$. The reusable LMG and LCV dose responses were shown to be $R^2=0.997$, $R^2=0.999$ respectively, as stable measurement results. Future research is necessary to improve dose sensitivity, dose rate dependency and gel fading with extensive chemical formulations.

Performance test of urine bioassay through participation in the NRIP (NRIP 참여를 통한 소변시료 바이오어세이 성능검사)

  • Ha, Wi-Ho;Yoo, Jaeryong;Yoon, Seokwon;Lee, Seung-Sook;Kim, Jong Kyoung
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.2
    • /
    • pp.96-102
    • /
    • 2014
  • Urine bioassay has been widely used for internal dosimetry due to simple process of sampling and measurement. In this paper, we participated in the NRIP (NIST Radiochemistry Intercomparison Program) hosted by US NIST to carry out a reliable performance test of urine bioassay and introduced the measurement method and results of NRIP-2013. In customary exercise with 60 days of reporting time, bioassay results of 12 radionuclides in the synthetic urine samples were acceptable based on the performance criteria of ANSI N13.30. In emergency preparedness exercise with 8 hours of reporting time, bioassay results of 9 radionuclides showed that differences ranged from -35% to 45%. However, we concluded that urine bioassay applied for emergency preparedness exercise would be applicable for rapid screening and estimation of internal exposure within a difference of ${\pm}45%$ in the event of radiological accidents.

Radioprotective Effect of Extracts from Plants Indigenous to Korea

  • Kang Kyoung-Ah;Zhang Rui;Chae Sung-Wook;Piao Mei Jing;Shin Tae-Kyun;Lee Nam-Ho;Park Jae-Woo;Hyun Jin-Won
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.3
    • /
    • pp.115-122
    • /
    • 2006
  • We have screened the cytoprotective effect on $\gamma$-ray radiation induced oxidative stress from eighteen Korean plant extracts. Querus salicina, Clerodendron trichotomum, Lamium amplexicaule, Lozoste lancifolia and Malus baccata were found to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and intracellular reactive oxygen species (ROS). As a result, extracts of these plants reduced cell death of Chinese hamster lung fibroblast (V79-4) cells induced by $H_2O_2$ treatment. In addition, these extracts protected cell death of V79-4 cells damaged by $\gamma$-ray radiation. In addition, these extracts scavenged ROS generated by radiation. Taken together, the results suggest that Quercus salicina, Clerodendron trichotomum, Lamium amplexicaule, Lozoste lancifolia and Malus baccata protect V79-4 cells against oxidative damage by radiation through scavenging ROS.

Age-Specific Thyroid Internal Dose Estimation for Koreans

  • Kwon, Tae-Eun;Yoon, Seokwon;Ha, Wi-Ho;Chung, Yoonsun;Jin, Young Woo
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.4
    • /
    • pp.170-177
    • /
    • 2021
  • Background: The International Commission on Radiological Protection is preparing to provide reference dose coefficients for environmental radioiodine intake based on newly developed age-specific biokinetic models. However, the biokinetics of iodine has been reported to be strongly dependent on the dietary intake of stable iodine; for example, the thyroidal uptake of iodine may be substantially lower in iodine-rich regions than in iodine-deficient regions. Therefore, this study attempted to establish a system of age-specific thyroid dose estimation for South Koreans, whose daily iodine intakes are significantly higher than that of the world population. Materials and Methods: Korean age-specific biokinetic parameters and thyroid masses were derived based on the previously developed Korean adult model and the Korean anatomical reference data for adults, respectively. This study complied with the principles used in the development of age-specific biokinetic models for world population and used the ratios of baseline values for each age group relative to the value for adults to derive age-specific values. Results and Discussion: Biokinetic model predictions based on the Korean age-specific parameters showed significant differences in iodine behaviors in the body compared to those predicted using the model for the world population. In particular, the Korean age-specific thyroid dose coefficients for 129I and 131I were considerably lower than those calculated for the world population (25%-76% of the values for the world population). Conclusion: These differences stress the need for Korean-specific internal dose assessments for infants and children, which can be achieved by using the data calculated in this study.

Determination of counting efficiency considering the biodistribution of 131I activity in the whole-body counting measurement

  • MinSeok Park ;Jaeryong Yoo;Minho Kim ;Won Il Jang ;Sunhoo Park
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.295-303
    • /
    • 2023
  • Whole-body counters are widely used to assess internal contamination after a nuclear accident. However, it is difficult to determine radioiodine activity due to limitations in conventional calibration phantoms. Inhaled or ingested radioiodine is heterogeneously distributed in the human body, necessitating time-dependent biodistribution for the assessment of the internal contamination caused by the radioiodine intake. This study aims at calculating counting efficiencies considering the biodistribution of 131I in whole-body counting measurement. Monte Carlo simulations with computational human phantoms were performed to calculate the whole-body counting efficiency for a realistic radioiodine distribution after its intake. The biodistributions of 131I for different age groups were computed based on biokinetic models and applied to age- and gender-specific computational phantoms to estimate counting efficiency. After calculating the whole-body counting efficiencies, the efficiency correction factors were derived as the ratio of the counting efficiencies obtained by considering a heterogeneous biodistribution of 131I over time to those obtained using the BOMAB phantom assuming a homogeneous distribution. Based on the correction factors, the internal contamination caused by 131I can be assessed using whole-body counters. These correction factors can minimize the influence of the biodistribution of 131I in whole-body counting measurement and improve the accuracy of internal dose assessment.

Evaluation of Performance and No-reference-based Quality for CT Image with ADMIRE Iterative Reconstruction Parameters: A Pilot Study (ADMIRE 반복적 재구성 파라메터에 따른 CT 영상의 특성 및 무참조 기반 화질 평가: 선행연구)

  • Bo-Min Park;Yoo-Jin Seo;Seong-Hyeon Kang;Jina Shim;Hajin Kim;Sewon Lim;Youngjin Lee
    • Journal of radiological science and technology
    • /
    • v.47 no.3
    • /
    • pp.175-182
    • /
    • 2024
  • Advanced modeled iterative reconstruction (ADMIRE) represents a repetitive reconstruction method that can adjust strength and kernel, each of which are known to affect computed tomography (CT) image quality. The aim of this study was to quantitatively analyze the noise and spatial resolution of CT images according to ADMIRE control factors. Patient images were obtained by applying ADMIRE strength 2 and 3, and kernel B40 and B59. For quantitative evaluations, the noise level, spatial resolution, and overall image quality were measured using coefficient of variation (COV), edge rise distance (ERD), and natural image quality evaluation (NIQE). The superior values for the average COV, ERD, and NIQE results were obtained for the ADMIRE reconstruction conditions of ADMIRE 2 + B40, ADMIRE 3 + B59, and ADMIRE3 + B59. NIQE, which represents the overall image quality based on no-reference, was about 6.04 when using ADMIRE 3 + B59, showing the best result among the reconstructed image acquisition conditions. The results of this study indicate that the ADMIRE strength and kernel chosen for use in ADMIRE reconstruction have a significant impact on CT image quality. This highlights the importance of adjusting to the control factors in consideration of the clinical environment.

Improvement of accuracy in radioactivity assessment of medical linear accelerator through self-absorption correction in HPGe detector

  • Suah Yu;Na Hye Kwon;Sang-Rok Kim;Young Jin Won;Kum Bae Kim;Se Byeong Lee;Cheol Ha Baek;Sang Hyoun Choi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2317-2323
    • /
    • 2024
  • Medical linear accelerators with an energy of 8 MV or higher are radiated owing to photonuclear reactions and neutron capture reactions. It is necessary to quantitatively evaluate the concentration of radioactive isotopes when replacing or disposing them. HPGe detectors are commonly used to identify isotopes and measure radioactivity. However, because the detection efficiency is generally calibrated using a standard material with a density of 1.0 g/cm3, a self-absorption effect occurs if the density of the measured material is high. In this study, self-absorption correction factors were calculated for tungsten, lead, copper, and SUS-303, which are the main materials of medical linear accelerator head parts, for each gamma-ray energy using MCNP 6.2 code. The self-absorption effect was more pronounced as the energy of the emitted gamma rays decreased and the density of the measured materials increased. These correction factors were applied to the radioactivity measurements of the in-built and portable HPGe detectors. Furthermore, compared to the surface dose rate measured by the survey meter, the accuracy of the measurements of radioactivity improved by an average of 124.31 and 100.53 % for inbuilt and portable HPGe detectors, respectively. The results showed a good agreement, with an average difference of 3.70 and 5.24 %.