Acknowledgement
This study was supported by a grant of the Korea Institute of Radiological and Medical Sciences (KIRAMS), funded by Ministry of Science and ICT(MSIT), Republic of Korea (No.50535-2022) and the Nuclear Safety Research Program through the Korea Foundation Of Nuclear Safety (KoFONS) using the financial resource granted by the Nuclear Safety and Security Commission (NSSC) of Republic of Korea (No. 2104038). The authors thank Choonsik Lee of the National Cancer Institute for providing valuable data on computational phantoms.
References
- O. Kurihara, E. Kim, K. Tani, M. Ogawa, K. Yajima, M. Kowatari, H. Tatsuzaki, Effective population monitoring for determination of the thyroidal radioiodine content of the public following a nuclear accident in Japan, Environmental Advances 8 (2022), 100206.
- O. Kurihara, C. Li, M.A. Lopez, E. Kim, K. Tani, T. Nakano, C. Takada, T. Momose, M. Akashi, Experiences of population monitoring using whole-body counters in response to the Fukushima nuclear accident, Health Phys. 115 (2) (2018) 259-274. https://doi.org/10.1097/HP.0000000000000862
- E. Kim, O. Kurihara, N. Kunishima, T. Nakano, K. Tani, M. Hachiya, T. Momose, T. Ishikawa, S. Tokonami, M. Hosoda, M. Akashi, Early intake of radiocesium by residents living near the TEPCO Fukushima Dai-ichi nuclear power plant after the accident. Part 1: internal doses based on whole-body measurements by NIRS, Health Phys. 111 (5) (2016) 451-464. https://doi.org/10.1097/HP.0000000000000563
- Health Physics Society, American National Standard: specifications for the bottle manikin absorption phantom, ANSI/HPS N13 (1999) 35.
- M. Park, H.S. Kim, J. Yoo, C.H. Kim, W.I. Jang, S. Park, Virtual calibration of whole-body counters to consider the size dependency of counting efficiency using Monte Carlo simulations, Nucl. Eng. Technol. 53 (2) (2021) 4122-4129. https://doi.org/10.1016/j.net.2021.06.026
- B. Zhang, M. Mille, X.G. Xu, An analysis of dependency of counting efficiency on worker anatomy for in vivo measurements: whole-body counting, Phys. Med. Biol. 53 (13) (2008) 3463-3475. https://doi.org/10.1088/0031-9155/53/13/004
- J. Bento, S. Barros, P. Teles, P. Vaz, M. Zankl, Efficiency correction factors of an ACCUSCAN whole-body counter due to the biodistribution of 134Cs, 137Cs and 60Co, Radiat. Protect. Dosim. 155 (1) (2013) 16-24. https://doi.org/10.1093/rpd/ncs308
- W.E. Bolch, J.L. Hurtado, C. Lee, R. Manager, E. Burgett, N. Hertel, W. Dickerson, Guidance on the use of handheld survey meters for radiological triage: time-dependent detector count rates corresponding to 50, 250, and 500 mSv effective dose for adult male and females, Health Phys. 102 (3) (2012) 305-325. https://doi.org/10.1097/HP.0b013e3182351660
- R. Anigstein, R.H. Olsher, D.A. Loomis, A. Ansary, Use of transportable radiation detection instruments to assess internal contamination from intakes of radionuclides Part II: calibration factors and ICAT computer program, Health Phys. 111 (6) (2016) 542-558. https://doi.org/10.1097/HP.0000000000000572
- E. Carinou, V. Koukouliou, M. Budayova, C. Potiriadis, V. Kamenopoulou, The calculation of a size correction factor for a whole-body counter, Nucl. Instrum. Methods Phys. Res. 580 (1) (2007) 197-200. https://doi.org/10.1016/j.nima.2007.05.083
- D. Krstic, O. Cuknic, D. Nikezic, Application of MCNP5 software for efficiency calculation of a whole body counter, Health Phys. 102 (6) (2012) 657-663. https://doi.org/10.1097/HP.0b013e318244152b
- D. Krstic, D. Nikezic, Efficiency of whole-body counter for various body size calculated by MCNP5 software, Radiat. Protect. Dosim. 152 (2012) 179-183. https://doi.org/10.1093/rpd/ncs219
- M. Park, J. Yoo, W.H. Ha, S. Park, Y.W. Jin, Measurement and simulation of the counting efficiency of a whole-body counter using a BOMAB phantom inserted with rod sources containing mixed radionuclides, Health Phys. 114 (3) (2018) 282-287. https://doi.org/10.1097/HP.0000000000000752
- Y. Chen, R. Qiu, C. Li, Z. Wu, J. Li, Construction of Chinese adult male phantom library and its application in the virtual calibration of in vivo measurement, Phys. Med. Biol. 61 (5) (2016) 2124-2144. https://doi.org/10.1088/0031-9155/61/5/2124
- T.C.F. Fonseca, A.L. Lebacq, L.C. Mihailescu, F. Vanhavere, R. Bogaerts, Development of a 3D human body library based on polygonal mesh surface for whole body counter set-up calibration, Prog.Nucl. Sci. Technol. 4 (2014) 614-618. https://doi.org/10.15669/pnst.4.614
- S. Nagataki, Thyroid consequences of the Fukushima nuclear reactor accident, Eur Thyroid J 1 (2012) 148-159. https://doi.org/10.1159/000342697
- K. Tani, Y. Igarashi, E. Kim, T. Iimoto, O. Kurihara, Monte-Carlo simulations with mathematical phantoms to investigate the effectiveness of a whole-body counter for thyroid measurement, Radiat. Meas. 135 (2020).
- C.J. Werner, MCNP User's Manual Code Version 6.2, Los Alamos National Laboratory, 2017. LA-UR-17-29981.
- F.L. Bronson, L.F. Booth, D.D. Richards, Fastscan - a computerized, anthropometrically designed, high throughput, whole body counter for the nuclear industry, in: Proceedings of the Seventeenth Midyear Topical Symposium of the Health Physics Society, 1984. Pasco, USA, https://mirion.s3.amazonaws.com/cms4_mirion/files/pdf/technical-papers/fastscan.pdf?1534969742. also available at.
- F.L. Bronson, The ACCUSCAN-II vertical scanning germanium whole body counter, in: Proceedings of the International Congress of the International Radiation Protection Association (IRPA), 1988. Sydney, Australia, https://mirion.s3.amazonaws.com/cms4_mirion/files/pdf/technical-papers/accuscan.pdf?1534969731. also available at.
- G.H. Kramer, L.C. Burns, S. Guerriere, Monte Carlo simulation of a scanning detector whole body counter and the effect of BOMAB phantom size on the calibration, Health Phys. 83 (4) (2002) 526-533. https://doi.org/10.1097/00004032-200210000-00011
- ICRP 110, Adult reference computational phantoms, in: Pergamon Press Publication 110, Ann, vol. 49, ICRP, Oxford, 2009, 3.
- ICRP 143, Paediatric reference computational phantoms, in: Pergamon Press Publication 143, Ann, vol. 49, ICRP, Oxford, 2020, 1.
- T. Momose, C. Takada, T. Nakagawa, K. Kanai, O. Kurihara, N. Tsujimura, Y. Ohi, T. Murayama, T. Suzuki, Y. Uezu, S. Furuta, Whole-body counting of Fukushima residents after the TEPCO Fukushima Daiichi nuclear power station accident, in: Proceedings of the First NIRS Symposium on the Reconstruction of Early Internal Dose in the TEPCO Fukushima Daiichi Nuclear Power Station Accident, National Institute of Radiological Sciences; NIRS-M-252, Chiba, Japan, 2012, pp. 67-82.
- R.S. Hayano, Sh Yamanaka, F.L. Bronson, B. Oginni, I. Muramatsu, BABSCAN: a whole-body counter for small children in Fukushima, J. Radiol. Prot. 34 (2014) 645-653. https://doi.org/10.1088/0952-4746/34/3/645
- K.F. Eckerman, R.W. Leggett, M. Cristy, C.B. Nelson, J.C. Ryman, A.L. Sjoreen, R.C. Ward, Dose and Risk Calculation Software, 2006. Oak Ridge: ORNL/TM-2001/190).
- ICRP 119, Compendium of dose coefficients based on ICRP publication 60, ICRP publication 119 ICRP41 (Suppl.) (2012). Ann.
- ICRP 72, Age-dependent doses to the members of the public from intake of radionuclides. Part 5: compilation of ingestion and inhalation coefficients, ICRP Publication 72, Ann. ICRP 26 (1) (1995).
- ICRP 66, Human respiratory tract model for radiological protection, ICRP publication 66, Ann. ICRP 24 (1-3) (1994).
- T. Ishikawa, Radiation doses and associated risk from the Fukushima nuclear accident: a review of recent publications, Asia Pac. J. Publ. Health 29 (2S) (2017) 18S-28S. https://doi.org/10.1177/1010539516675703
- ICRP 145, Adult mesh-type reference computational phantoms, ICRP publication 145, Ann. ICRP49(3), 2020.