• Title/Summary/Keyword: Radioactive release

Search Result 208, Processing Time 0.022 seconds

The Study on the Dilution Time of Radioactive Tracer in Estradiol Measurement (방사성 요오드 치료 후, 퇴원 선량 측정에 있어 각국의 기준 및 권고 비교)

  • Lee, Seung Jae;Seo, Soo Hyun;Lee, Sung Ha;Park, Yong Sung;Oh, Ki Baek;Kim, Jae Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.2
    • /
    • pp.49-54
    • /
    • 2017
  • Purpose The high-dose administration of I-131 has been standing for the basic therapy method of thyroid cancer. In korea, it is not necessary for patients to be hospitalized if the administration dose are under 1.2 GBq. However, if the dose are over 1.2 GBq, the patients should be stay in special ward with radiation shield. In such cases, the radioactivity level upon release should be under a dose of $70{\mu}Sv/hr$ at a distance of approx. 1m. This regulation bring the patients to stay for about 2 to 3 days in ward before the release. Materials and Methods Using the inpatients' release data of severance hospital, an inpatient-days were retrospectively calculated and compared with practical data and estimate the inpatient-days with the conditions of korea ($70{\mu}Sv/hr$), Japan ($30{\mu}Sv/hr$), germany ($3.5{\mu}Sv/hr$ at a distance of approx. 2 m), and other european countries. Results When a effective half-life of 15.4 was used, the expected inpatient-days were calculated as 2.15 days in the condition of Japanese regulation and 1.37 days in the condition of korean regulation. The practical inpatient-days of patients in Severance hospital were 1.32 days. Conclusion As ICRP 94 has been mentioned that the release of patients administrated with I-131 for the therapy should be carefully considered because each patients has different thyroid uptake rate and their conditions with family members after the release from the ward. Nonetheless, efforts to bring more aquate data which is for getting closer to the practical data should be continuously studied.

  • PDF

Evaluation of Ultimate Pressure Capacity of Wolsong Containment Structure (월성 원자력발전소 격납건물의 극한내압평가)

  • Kwak Hyo-Gyoung;Kim Jae Hong;Kim Sun-Hoon;Chung Yun-Suk
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.183-189
    • /
    • 2005
  • Nuclear containment structure is the last barrier for being secure from any nuclear power plant accident. Even though the safety requirements of nuclear power plant have been focused on removing accidental situations, nuclear containment structure must reserve the sufficient resisting capacity to any accident because it works as the last barrier. The acceptable nuclear containment structure makes possible to limit the effect of internal accidents and to avoid radioactive release. In this study, to conduct the numerical analysis for the structural safety of a containment structure, loss of coolant accident (LOCA) is considered as the basic accidental load, and Wolsong containment structure is considered as a target structure. The CANDU containment structure, such as Wolsong containment structure, is a prestressed concrete shell structure which has dome and is reinforced with bonded tendons. The evaluation of ultimate pressure capacity was conducted by nonlinear analysis of a prestressed concrete containment structure.

  • PDF

Development of Modified Product Consistency Test

  • Park, Kwansik;Jiawei Sheng;Maeng, Sung-Jun;Song, Myung-Jae
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.391-396
    • /
    • 1998
  • Modified product Consistency Test (M-PCT) has been developed as an alternative to other existing methods in determining the leachability of glass. M-PCT, the leaching method, is a hybrid of MCC-l and PCT, but can provide quicker sample preparation. Larger diameter glass sample (1.0-2.0 mm) than in the PCT method can be used so that the glass beads are more easily produced and cleaned. From the M-PCT, the total mass loss (ML) of glass, the normalized elemental release rate (NLi), pH value of leachate have been obtained. For some selected glasses in which leaching rates have been known, their chemical durablility have been tested using the M-PCT method. The results are compared to the literature data for the glasses. It is found that M-PCT method is reasonable and suitable in determining the leachability of Low and Intermediate level Radioactive Waste glass form, such as the pH, elemental loss and total mass loss.

  • PDF

Estimation of Effective Dose to Residents Due to Hypothetical Accidents During Dismantling of Steam Generator

  • Kyeong-Ju Lee;Chang-Lak Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.2
    • /
    • pp.183-191
    • /
    • 2023
  • The potential impact of hypothetical accidents that occur during the immediate and deferred dismantling of the Kori Unit 1 steam generator has been comprehensively evaluated. The evaluation includes determining the inventory of radionuclides in the Steam Generator based on surface contamination measurements, assuming a rate of release for each accident scenario, and applying external and internal exposure dose coefficients to assess the effects of radionuclides on human health. The evaluation also includes calculating the atmospheric dispersion factor using the PAVAN code and analyzing three years of meteorological data from Kori NPP to determine the degree of diffusion of radionuclides in the atmosphere. Overall, the effective dose for residents living in the Exclusion Area Boundary (EAB) of Kori NPP is predicted, an it is found that the maximum level of the dose is 0.034% compared to the annual dose limit of 1 mSv for the general public. This implies that the potential impact of hypothetical accidents on human health discussed above is within acceptable limits.

Evaluation of Water Suction for the Compacted Bentonite Buffer Considering Temperature Variation (온도 변화를 고려한 압축 벤토나이트 완충재의 수분흡입력 평가)

  • Yoon, Seok;Go, Gyu-Hyun;Lee, Jae-Owan;Kim, Geon-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.7-14
    • /
    • 2019
  • The compacted bentonite buffer is one of the major components of an engineered barrier system (EBS) for the disposal of high-level radioactive waste (HLW), and it is considered the best candidate for the buffer material. The buffer is located between disposal canisters and near-field rock mass, and it interrupts the release of radionuclide from disposal canisters and protect them from the penetration of groundwater. At initial disposal condition, degree of saturation of the compacted bentonite buffer decreases because of high thermal quantities released from the disposal canisters. However, the degree of saturation of the compacted bentonite buffer gradually increases caused by inflow of groundwater. The saturated and unsaturated behavior of the buffer is a very important input data since it can determine the safety performance of EBS. Therefore, this paper investigated water retention capacity (WRC) for the Korean compacted bentonite buffer. The WRC of the compacted bentonite buffer was derived by measuring volumetric water content and water suction when temperature variation was between 24℃~125℃ considering decrease of degree of saturation with respect to temperature increase. The WRC was also derived with the same volumetric water content under the room temperature condition, and it showed 1~15% larger water suction than high temperature condition.

Improvement of a Dynamic Food Chain Model Considering the Influence of Radioactive Contamination of Foods by Rainfall During a Nuclear Emergency (원자력 사고 중 강우에 의한 음식물 오염영향을 고려한 역동학적 섭식경로모델 개선)

  • Hwang, Won-Tae;Kim, Eun-Han;Han, Moon-Hec;Choi, Yong-Ho;Lee, Han-Soo;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.1
    • /
    • pp.21-26
    • /
    • 2002
  • For the consideration of the influence on radioactive contamination of foods due to rain during the release period of radionuclides in a nuclear accident, the previous dynamic food chain model was improved. Wet interception coefficients for the agricultural plants were derived as a function of radionuclide and rainfall amount, and mathematical formula of the model was also re-established. In the results for the same time-integrated radioactive concentrations on the ground, radioactive contamination of foods decreased greatly by rainfall, and it decreased dramatically according to increasing rainfall amount. It means that predictive contamination in foods using the previous dynamic food chain model, in which dry interception to the agricultural plants is only considered, can be overestimated. Among radionuclides considering in this study ($^{137}Cs,\;^{90}Sr,\;^{131}I$), influence of rainfall for food contamination was the most sensitive to $^{131}I$, and the least sensitive to $^{90}Sr$.

Treatment of Radioactive Liquid Waste Using Natural Evaporator and Resulted Exposure Dose Assessment (증발을 이용한 방사성 액체폐기물의 처리와 피폭선량평가)

  • Jeong, Gyeong-Hwan;Park, Seung-Kook;Kim, Eun-Han;Jung, Ki-Jung;Park, Hyun-Soo
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.2
    • /
    • pp.101-108
    • /
    • 1999
  • The influence of the relative humidity, the temperature and the velocity of supply air on evaporation rate has been studied with non-boiling forced evaporation system in order to treat very low level radioactive liquid wastes produced from the decontamination and decommissioning activities. Experimental data on the evaporation rate have been obtained with the divers variables and experimental equation of air velocity was also obtained by the correlation of those data. The decontamination factor of this system was also obtained by the experimental data from a simulated liquid waste containing Cs-137 radio isotope ; $DF=10^4$. Since the commercial system will be operated for the treatment of the very low level radioactive liquid waste produced from decontamination & decommissioning of TRIGA Mark-II&III research reactor, the environmental assessment has been conducted to improve the operational safety. Exposure dose rate for an individual member of general public was assessed, and it showed that it was very lower than individual dose limits. The release of radioactivity of radioisotope material (Cs-137) to the environment was assessed, and result showed that it was $4.637{\times}10^{-14}\;{\mu}Ci/cc$.

  • PDF

The Evaluation of Minimum Cooling Period for Loading of PWR Spent Nuclear Fuel of a Dual Purpose Metal Cask (국내 경수로 사용후핵연료의 금속 겸용용기 장전을 위한 최소 냉각기간 평가)

  • Dho, Ho-Seog;Kim, Tae-Man;Cho, Chun-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.411-422
    • /
    • 2016
  • Recently, because the wet pool storage facilities of NPPs in Korea has become saturated, there has been much active R&D on an interim dry storage system using a transportation and storage cask. Generally, the shielding evaluation for the design of a spent fuel transportation and storage cask is performed by the design basis fuel, which selects the most conservative fuel among the fuels to be loaded into the cask. However, the loading of actual spent fuel into the transportation metal cask is not limited to the design basis fuel used in the shielding evaluation; the loading feasibility of actual spent fuel is determined by the shielding evaluation that considers the characteristics of the initial enrichment, the maximum burnup and the minimum cooling period. This study describes a shielding analysis method for determining the minimum cooling period of spent fuel that meets the domestic transportation standard of the dual purpose metal cask. In particular, the spent fuel of 3.0~4.5wt% initial enrichment, which has a large amount of release, was evaluated by segmented shielding calculations for efficient improvement of the results. The shielding evaluation revealed that about 81% of generated spent fuel from the domestic nuclear power plants until 2008 could be transported by the dual purpose metal cask. The results of this study will be helpful in establishing a technical basis for developing operating procedures for transportation of the dual purpose metal cask.

A Model for Evaluating the Radioactive Contamination in the Urban Environment (도시환경에서 방사성물질의 오염평가 모델개발)

  • Hwang, Won-Tae;Kim, Eun-Han;Jeong, Hyo-Joon;Suh, Kyung-Suk;Han, Moon-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.3
    • /
    • pp.99-105
    • /
    • 2005
  • A model for evaluating radioactive contamination in the urban environment, named METRO-K, was developed as a basic step for accident consequence analysis in case of an accidental release. The three kind of radionuclides $(^{137}Cs,\;^{106}Ru,\;^{131}I)$ and the different chemical forms of iodine (particulate, organic and elemental forms) are considered in the model. The radioactive concentrations are evaluated for the five types of surface (roof, paved road, wall, lawn/soil, tree) as a function of time. Using the model, the contaminative impacts of the surfaces were intensively investigated with respect to with and without precipitation during the measurement periods of radionuclides in air. In addition, a practical application study was conducted using $^{137}Cs$ concentration in air and precipitation measured in an European country at the Chernobyl accident. As a result precipitation was an influential factor in surface contamination. The degree of contamination was strongly dependent on the types of radionuclide and surface. Precipitation was more influential in contamination of $^{137}Cs$ than that of $^{131}I$ (elemental form).

An Influence Analysis on the Gap Space of an Engineered Barrier for an HLW Repository (고준위폐기물처분장 공학적방벽의 갭 공간이 미치는 영향 분석)

  • Yoon, Seok;Lee, Changsoo;Kim, Min-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.4
    • /
    • pp.19-26
    • /
    • 2021
  • The high-level radioactive waste (HLW) produced from nuclear power plants is disposed in a rock-mass at a depth of hundreds meters below the ground level. Since HLW is very dangerous to human being, it must be disposed of safely by the engineered barrier system (EBS). The EBS consists of a disposal canister, backfill material, buffer material, and so on. When the components of EBS are installed, gaps inevitably exist not only between the rock-mass and buffer material but also between the canister and buffer material. The gap can reduce water-retarding capacity and heat release efficiency of the buffer material, so it is necessary to investigate properties of gap-filling materials and to analyze gap spacing effect. Furthermore, there has been few researches considering domestic disposal system compared to overseas researches. In this reason, this research derived the peak temperature of the bentonite buffer material considering domestic disposal system based on the numerical analysis. The gap between the canister and buffer material had a minor effect on the peak temperature of the bentonite buffer material, but there was 40% difference of the peak temperature of the bentonite buffer material because of the gap existence between the buffer material and rock mass.