Improvement of a Dynamic Food Chain Model Considering the Influence of Radioactive Contamination of Foods by Rainfall During a Nuclear Emergency

원자력 사고 중 강우에 의한 음식물 오염영향을 고려한 역동학적 섭식경로모델 개선

  • Published : 2002.03.30

Abstract

For the consideration of the influence on radioactive contamination of foods due to rain during the release period of radionuclides in a nuclear accident, the previous dynamic food chain model was improved. Wet interception coefficients for the agricultural plants were derived as a function of radionuclide and rainfall amount, and mathematical formula of the model was also re-established. In the results for the same time-integrated radioactive concentrations on the ground, radioactive contamination of foods decreased greatly by rainfall, and it decreased dramatically according to increasing rainfall amount. It means that predictive contamination in foods using the previous dynamic food chain model, in which dry interception to the agricultural plants is only considered, can be overestimated. Among radionuclides considering in this study ($^{137}Cs,\;^{90}Sr,\;^{131}I$), influence of rainfall for food contamination was the most sensitive to $^{131}I$, and the least sensitive to $^{90}Sr$.

원자력 사고로 인해 방사성물질이 환경으로 방출되는 기간동안 강우가 있을 경우 음식물의 오염 영향을 고려하기 위해 개발된 역동학적 섭식경로모델을 개선하였다. 이를 위해 핵종별 강우량에 따른 농작물에 대한 습차단 상수를 유도하였으며, 아울러 개발된 역동학적 섭식경로모델에 대한 수학적 모델을 재정립하였다. 평가결과, 같은 지표위 농도에 대해 강우는 음식물의 오염을 크게 감소시키며 강우량 증가에 따라 오염은 급격히 감소하였다. 이러한 사실은 원자력 사고 기간동아 강우가 있을 경우 농작물의 건차단 만을 고려한 기존 역동학적 섭식경로모델을 사용하여 평가하였을 때 그 결과는 과대 평가될 수 있다는 사실을 나타낸다. 본 연구에서 고려하는 핵종 ($^{137}Cs,\;^{90}Sr,\;^{131}I$) 중에서 강우량에 따른 음식물의 농도 감소는 $^{131}I$에서 가장 뚜렷하게 나타났으며, $^{90}Sr$이 가장 영향이 적었다.

Keywords

References

  1. IAEA, 'The International Chernobyl Project: Assessment of Radiological Consequences and Evaluation of Protective Measures', Technical Report (1991)
  2. W. T. Hwang, G. S. Cho and M. H. Han, 'Development of a Dynamic Food Chain Model DYNACON and Its Application to Korean Agricultural Conditions', Journal of Nuclear Science and Technology, 35(6), 454-461 (1998)
  3. M. H. Han et al., 'Development of Environmental Radiation Protection Technology : Development of Radiological Emergency Preparedness and Biological Dosimetry Technology', Korea Atomic Energy Research Institute, KAERI/RR-1913/98 (1998)
  4. A. C. Chamblain, 'Interception and Retention of Radioactive Aerosols by Vegetation', Atmospheric Environment 4, 57-63 (1970)
  5. Personal Communication with S. R. Peterson, Lawrence Livermore National Lab.
  6. IAEA, 'Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Temperate Environment', IAEA Technical Reports Series No. 364 (1994)