• Title/Summary/Keyword: Radioactive nuclides

Search Result 146, Processing Time 0.03 seconds

Calibration Method of the Tomographic Gamma Scan Techniques Available for Accurately Characterizing 137Cs from 110mAg Interference (110mAg 간섭으로부터 137Cs 정량평가를 위한 드럼핵종분석 교정기술)

  • Jeong, Sung Yeop
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.1
    • /
    • pp.57-61
    • /
    • 2016
  • The Tomographic Gamma Scan (TGS) technique partitions radioactive waste drums into $10{\times}10{\times}16$ voxels and assays both the density and concentration of radioactivity for each voxel thus providing for improved accuracy, when compared to the traditional Non-Destructive Assay(NDA) techniques. It could decrease the degree of precision measurement since there is a trade-off between spatial resolution and precision. This latter drawback is compensated by expanding the Region of Interest (ROI) that differentiates the full energy peaks, which, in turn, results in an optimized degree of precision. The enlarged ROI, however, increases the probability of interference among those nuclides that emit energies in the adjacent spectrum. This study has identified the cause of such interference for the reference nuclide of the TGS technique, $^{137}Cs$ (661.66 keV, half-life 30.5 years), to be $^{110m}Ag$ (657.75 keV, half-life 249.76 days). A new calibration method of determining the optimized ROI was developed, and its effectiveness in accurately characterizing $^{137}Cs$ and eliminating the interference was further ascertained.

Acceptable Decontamination Factor for Near-Surface Disposal of PEACER Wastes

  • Kim, Sung-Il;Lee, Kun-Jai
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.280-289
    • /
    • 2005
  • A pyrochemical process has been introduced and utilized so that the transmutation of spent PWR fuel in PEACER can produce mainly low and intermediate level waste for near surface disposal. Major radioactive nuclides from PEACER pyroprocessing are composed of TRU and LLFP. In this study, the requirement for the final waste from PEACER is evaluated based on the methodology for establishment of waste acceptance criteria. Also, sensitivity analysis for several input parameters is conducted in order to determine acceptable decontamination factor (DF) and LLFP removal efficiency and to find out input parameter that extremely have an effect on DE As a result of the study, LLFP removal efficiency, especially Sr-90 and Tc-99, is proved to be a major nuclide which contributes to annual dose by human intrusion scenario rather than TRU DF. More than $98.5\%$ of LLFP have to be removed to meet below dose constraint within the DF more than 5.0E+03. Besides, because of the relative short half-life of Sr-90, the increasing of the institutional control period is recommended for most important input parameter to determine DF.

  • PDF

The Study on Radioactivity Reduction of Spent PWR Cladding Hull (경수로사용후핵연료 폐피복관의 방사능 저감방안)

  • 정인하;김종호;박창제;정양홍;송기찬;이정원;박장진;양명승
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.381-387
    • /
    • 2003
  • Hull arising from the spent PWR fuel elements is classified as a high-level radioactive waste. This report describes the radio-chemical characteristics of the hull -from PWR spent fuel of 32, 000MWd/tU burn-up and 15 years cooling, discharged from Gori Unit I cycled 4 -7-by examination and literature survey. On the basis of the results, a method of degradation to middle and low-level radio active waste was proposed by dry process such as laser or plasma technique with removing the nuclides deposited on the surface of the hull.

  • PDF

Radiation Dose Evaluation for Metallization Process Facility of Spent Fuel (사용후핵연료 금속전환공정시설의 방사선환경영향평가)

  • 국동학;정원명;구정회;조일제;이은표;유길성
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.596-600
    • /
    • 2003
  • The Advanced spent fuel Conditioning Process(ACP) is under development for the effective management of spent fuel which had been generated in nuclear plants. The ACP needs a hot cell where most operations will be peformed. To give priority to the environment safety, radiation doses evaluation for the radioactive nuclides were preliminarily peformed in both normal operation and accident case. The evaluation result shows a safe margin for regulation limits and SAR limit of IMEF where this facility will be constructed.

  • PDF

Radioactivity Analysis of Soils Stored in KAERI for Regulatory Clearance (연구소 내 저장 중인 토양의 규제해제를 위한 방사능 분석)

  • Hong D.S.;Kim T.K.;Kang I.S.;Cho H.S.;Shon J.S.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.161-166
    • /
    • 2005
  • In KAERI, about 3,100 drums containing soil have been stored. The soils were generated from the decommissioning process of Seoul office in 1988. Those soils occupy about $27\%$ of the capacity of the radioactive waste storage facility and make it difficult to maintain the storage facility. The major radioactive nuclides contained in the soils were expected to be Co-60 and Cs-137. As 16 years have passed, the radioactivity of those nuclides have decayed a lot. In this study, as a basis of regulatory clearance, radionuclides and radioactivity concentration of soils were analyzed. As a result, there are only Co-60 and Cs-137 in soils as ${\gamma}-emitters$. The total concentration of ${\gamma}-emitters$ in soil is analyzed as about $0.01\;{\sim}\;0.12$ Bq/g. As the soils are expected to be regulatory cleared in 2009, those concentrations will decay to be less than 0.1 Bq/g. This concentration can be meet the regulatory criteria suggested by IAEA. The regulatory clearance will be proceeded based on not only the assessment results of environmental influence but also related regulations.

  • PDF

Production and Application of Domestic Input Data for Safety Assessment of Disposal (처분안전성평가를 위한 국내고유 입력자료의 확보와 적용)

  • Park, Chung-Kyun;Lee, Jae-Kwang;Baik, Min-Hoon;Lee, Youn-Myoung;Ko, Nak-Youl;Jeong, Jong-Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.161-170
    • /
    • 2012
  • To provide domestic values of input parameters in a safety assessment of radioactive waste disposal under domestic deep underground environments, various kinds of experiments have been carried out under KURT (KAERI Underground Research Tunnel) conditions. The input parameters were classified, and some of them were selected for this study by the criteria of importance. The domestic experimental data under KURT environments were given top priority in the data review process. Foreign data under similar conditions to KURT were also gathered. The collected data were arranged and the statistical calculations were processed. The properties and distribution of the data were explained and compared to foreign values in view of their validity. The following parameters were analysed: failure time and early time failure rate of a container, solubility of nuclides, porosity and density of the buffer, and distribution coefficients of nuclides in the geomedia, hydraulic conductivity, diffusion depth of nuclides, groundwater flow rate, fracture aperture, length of internal fracture, and width of faulted rock mass in the host rock.

Determination of Radionuclide Concentration Limit for Low and Intermediate-Level Radioactive Waste Disposal Facility II: Application of Optimization Methodology for Underground Silo Type Disposal Facility (중저준위방사성폐기물 처분시설의 처분농도제한치 설정에 대한 고찰 II: 최적화 방법론 개발 및 적용)

  • Hong, Sung-Wook;Kim, Min Seong;Jung, Kang Il;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.265-279
    • /
    • 2017
  • The Gyeongju underground silo type disposal facility, approved for use in December 2014, is in operation for the disposal of low and very low-level radioactive wastes, excluding intermediate-level waste. That is why the existing low-level radioactive waste level has been subdivided and the concentration limit value for intermediate-level waste has been changed in accordance with Nuclear Safety Commission Notice 2014-003. For the safe disposal of intermediate-level wastes, new optimization methodology for calculating the concentration limit of intermediate radioactive level wastes at an underground silo type disposal facility was developed. According to the developed optimization methodology, concentration limits of intermediate-level wastes were derived and the inventory of radioactive nuclides was evaluated. The operation and post closure scenarios were evaluated for the derived radioactive nuclide inventory and the results of all scenarios were confirmed to meet the regulatory limit. However, in case of $^{14}C$, it was confirmed that additional radioactivity limitation through a well scenario was needed in addition to the limit of disposal concentration. It was confirmed that the derived intermediate concentration limit of radioactive waste can be used as the intermediate-level waste concentration limit for the underground disposal facility. For the safe disposal of intermediate-level wastes, KORAD plans to acquire additional data from the radioactive waste generator and manage the cumulative radioactivity of $^{14}C$.

Simultaneous Separation and Determination of $^{l4}C\;and\;^3H$ in Spent Resins from PWR Nuclear Power Plants (가압경수로형 원전에서 발생된 폐수지의 $^{14}C$$^3H$ 동시 분리 및 측정)

  • Park, Soon-Dal;Kim, Jung-Suck;Kim, Jong-Goo;Han, Sun-Ho;Jee, Kwang-Yong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.3
    • /
    • pp.179-188
    • /
    • 2007
  • In this work $^{14}C\;and\;^3H$ distribution characteristics of spent resins from nuclear power plants(NPPs), pressurized water reactors(PWRs), was investigated. It was found that the recovery percent of $^{14}C$ by the wet oxidation-acid stripping was $81%{\sim}100%$ for the added activity range of $^{14}C,\;0.72\;Bq{\sim}460\;Bq$, and it was not affected by the kinds of stripping acids, 3N-HCl, $3\;N-HNO_3\;and\;3\;N-H_2SO_4$. And the recovery percent of $^3H$ by distillation using the same apparatus was $81%{\sim}101%$ for the added activity range of $^3H,\;0.60\;Bq{\sim}435\;Bq$. Among the tested stripping acids, 3\;N-HCl, $3\;N-HNO_3\;and\;3\;N-H_2SO_4$, only the trapped $^3H$ solution by distillation in $3\;N-H_2SO_4$ was compatible with the 3H scintillator, Ultimagold XR. Neither of the $^{14}C\;and\;^3H$ trapping solutions from the spent ion exchange resin samples by the wet oxidation-3 $N-H_2SO_4$ stripping contained gamma nuclides. However, some gamma nuclides, $^{60}Co,\;^{134}Cs,\;^{137}Cs\;and\;^{54}Mn$, were found in the trapped $^3H$ solutions of the spent resins by the wet oxidation-3 N-HCl stripping. It was the same for the $^3H$ trapping solutions of the spent resins by Sample Oxidizer(PACKARD MODEL 307). Meanwhile only two nuclides, $^{134}Cs,\;and\;^{134}Cs$, were found in the $^{14}C$ trapping solutions of the spent resins by Sample Oxidizer(PACKARD MODEL 307). It was found that most of the $^{14}C$ in the spent resins existed as inorganic carbon form, more than about 70% of the total $^{14}C$ content. Among the analyzed 30 spent ion exchange resin samples, the average concentration of $^{14}C$ and $^3C$ for the high radioactive samples, 8 samples, was $19000\;Bq/g{\pm}41000\;Bq/g,\;670\;Bq/g{\pm}460\;Bq/g$ and that for the low radioactive samples, 22 samples, was $4.2\;Bq/g{\pm}4.3\;Bq/g,\;6.0\;Bq/g{\pm}5.3\;Bq/g$, respectively. And the average $^{14}C/^3H$ ratio for the high radioactive samples, was higher, 28, than that of low radioactive samples, 0.70. Some linear relationship trend was found between the activity concentrations of $^{14}C\;and\;^3H$.

  • PDF

Activation Analysis of Dual-purpose Metal Cask After the End of Design Lifetime for Decommission (설계수명 이후 해체를 위한 금속 겸용용기의 방사화 특성 평가)

  • Kim, Tae-Man;Ku, Ji-Young;Dho, Ho-Seog;Cho, Chun-Hyung;Ko, Jae-Hun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.343-356
    • /
    • 2016
  • The Korea Radioactive Waste Agency (KORAD) has developed a dual-purpose metal cask for the dry storage of spent nuclear fuel that has been generated by domestic light-water reactors. The metal cask was designed in compliance with international and domestic technology standards, and safety was the most important consideration in developing the design. It was designed to maintain its integrity for 50 years in terms of major safety factors. The metal cask ensures the minimization of waste generated by maintenance activities during the storage period as well as the safe management of the waste. An activation evaluation of the main body, which includes internal and external components of metal casks whose design lifetime has expired, provides quantitative data on their radioactive inventory. The radioactive inventory of the main body and the components of the metal cask were calculated by applying the MCNP5 ORIGEN-2 evaluation system and by considering each component's chemical composition, neutron flux distribution, and reaction rate, as well as the duration of neutron irradiation during the storage period. The evaluation results revealed that 10 years after the end of the cask's design life, $^{60}Co$ had greater radioactivity than other nuclides among the metal materials. In the case of the neutron shield, nuclides that emit high-energy gamma rays such as $^{28}Al$ and $^{24}Na$ had greater radioactivity immediately after the design lifetime. However, their radioactivity level became negligible after six months due to their short half-life. The surface exposure dose rates of the canister and the main body of the metal cask from which the spent nuclear fuel had been removed with expiration of the design lifetime were determined to be at very low levels, and the radiation exposure doses to which radiation workers were subjected during the decommissioning process appeared to be at insignificant levels. The evaluations of this study strongly suggest that the nuclide inventory of a spent nuclear fuel metal cask can be utilized as basic data when decommissioning of a metal cask is planned, for example, for the development of a decommissioning plan, the determination of a decommissioning method, the estimation of radiation exposure to workers engaged in decommissioning operations, the management/reuse of radioactive wastes, etc.

Effect of pH and ionic strength on the removal of radionuclide by Na-mica (pH와 이온강도가 나트륨-운모를 이용한 방사성 핵종 흡착제거에 미치는 영향)

  • Seol, Bitna;Cho, Yunchul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.1
    • /
    • pp.83-89
    • /
    • 2014
  • The aim of this study is to investigate the sorption/ion exchange of radioactive nuclides such as $Cs^+$ and $Sr^{2+}$ by synthetic Na-micas. In order to prepare Na-micas, two natural micas (phlogopite and biotite) were used as precursor materials. XRD, SEM, and EDS analyses were used to examine material characterization of synthetic Na-micas. Analyses of materials revealed that Na-micas were successfully obtained from natrual micas by K removal treatment. On the other hand, single solute (Cs or Sr) and bi-solute (Cs/Sr) sorption experiments were carried out to determine sorption capacity of Na-micas for Cs and Sr under different pH and ionic strength conditions. Uptake of Cs and Sr by micas in bi-solute system was lower than in single-solute system. Additionally, Langmuir and Langmuir competitive models were applied to describe sorption isotherm of Na-micas. bi-solute system was well described by Langmuir competitive models. For the results obtained in this study, Na-micas could be promising sorbents to treat multi-radioactive species from water and groundwater.