• Title/Summary/Keyword: Radioactive gas

Search Result 203, Processing Time 0.025 seconds

Long-Term Experiments for Demonstrating Durability of a Concrete Barrier and Gas Generation in a Low-and Intermediate-Level Waste Disposal Facility

  • Kang, Myunggoo;Seo, Myunghwan;Kim, Soo-Gin;Kwon, Ki-Jung;Jung, Haeryong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.267-270
    • /
    • 2021
  • Long-term experiments have been conducted on two important safety issues: long-term durability of a concrete barrier with the steel reinforcements and gas generation from low-and intermediate-level wastes in an underground research tunnel of a radioactive waste disposal facility. The gas generation and microbial communities were monitored from waste packages (200 L and 320 L) containing simulated dry active wastes. In the concrete experiment, corrosion sensors were installed on the steel reinforcements which were embedded 10 cm below the surface of concrete in a concrete mock-up, and groundwater was fed into the mock-up at a pressure of 2.1 bars to accelerate groundwater infiltration. No clear evidence was observed with respect to corrosion initiation of the steel reinforcement for 4 years of operation. This is attributed to the high integrity and low hydraulic conductivity of the concrete. In the gas generation experiment, significant levels of gas generation were not measured for 4 years. These experiments are expected to be conducted for a period of more than 10 years.

Gas Migration in Low- and Intermediate-Level Waste (LILW) Disposal Facility in Korea (중·저준위 방사성폐기물 처분시설 폐쇄후 기체이동)

  • Ha, Jaechul;Lee, Jeong-Hwan;Jung, Haeryong;Kim, Juyub;Kim, Juyoul
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.4
    • /
    • pp.267-274
    • /
    • 2014
  • The first Low- and Intermediate-Level Waste (LILW) disposal facility with 6 silos has been constructed in granite host rock saturated with groundwater in Korea. A two-dimensional numerical modeling on gas migration was carried out using TOUGH2 with EOS5 module in the disposal facility. Laboratory-scale experiments were also performed to measure the important properties of silo concrete related with gas migration. The gas entry pressure and relative gas permeability of the concrete was determined to be $0.97{\pm}0.15bar$ and $2.44{\times}10^{-17}m^2$, respectively. The results of the numerical modeling showed that hydrogen gas generated from radioactive wastes was dissolved in groundwater and migrated to biosphere as an aqueous phase. Only a small portion of hydrogen appeared as a gas phase after 1,000 years of gas generation. The results strongly suggested that hydrogen gas does not accumulate inside the disposal facility as a gas phase. Therefore, it is expected that there would be no harmful effects on the integrity of the silo concrete due to gas generation.

Towards grain-scale modelling of the release of radioactive fission gas from oxide fuel. Part II: Coupling SCIANTIX with TRANSURANUS

  • G. Zullo;D. Pizzocri;A. Magni;P. Van Uffelen;A. Schubert;L. Luzzi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4460-4473
    • /
    • 2022
  • The behaviour of the fission gas plays an important role in the fuel rod performance. In a previous work, we presented a physics-based model describing intra- and inter-granular behaviour of radioactive fission gas. The model was implemented in SCIANTIX, a mesoscale module for fission gas behaviour, and assessed against the CONTACT 1 irradiation experiment. In this work, we present the multi-scale coupling between the TRANSURANUS fuel performance code and SCIANTIX, used as mechanistic module for stable and radioactive fission gas behaviour. We exploit the coupled code version to reproduce two integral irradiation experiments involving standard fuel rod segments in steady-state operation (CONTACT 1) and during successive power transients (HATAC C2). The simulation results demonstrate the predictive capabilities of the code coupling and contribute to the integral validation of the models implemented in SCIANTIX.

An Effective Block of Radioactive Gases for the Storage During the Synthesis of Radiopharmaceutical (방사성의약품 합성에서 발생하는 방사성기체의 효율적 차단)

  • Chi, Yong Gi;Kim, Dong Il;Kim, Si Hwal;Won, Moon Hee;Choe, Seong-Uk;Choi, Choon Ki;Seok, Jae Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.126-130
    • /
    • 2012
  • Purpose : Methode an effective block was investigated to deal with volatile radioactive gas, short lived radioactive waste generated as a result of the routinely produced radiopharmaceuticals FDG (2-deoxy-2-[$^{18}F$]fluoro-D-glucose) and compound with $^{11}C$. Materials and Methods : All components of the radiation stack monitoring and data management system for continuous radioactive gas detection in the air extract system purchase from fixed noble gas monitor of Berthold company. TEDLAR gas sampling bags purchase from the Dongbanghitech company. TEDLAR gas sampling bags (volume: 10 L) connected via paraflex or PTFE tubing and Teflon 3 way stopcock. When installing TEDLAR gas sampling bags in Hot cell on the inside and not radioactive gas concentrations were compared. According to whether the Hot cell inside a activated carbon filter installed, compare the difference in concentration of the radioactive gas $^{18}F$. Comparison of radiation emission concentration difference of module a FASTlab and TRACElab. Results : Activated carbon filter are installed in the Hot cell, a measure of the concentration of radioactive gas was 8 $Bq/m^3$. Without activated carbone filter in the hot cell was 300 $Bq/m^3$. Tedlar bag prior to installation of the radioactive gases a measure of the concentration was 3,500 $Bq/m^3$, $^{11}C$ synthesis of the measured concentration was 27,000 $Bq/m^3$. After installed a Tedlar bag and a measure concentration of the radioactive gases was 300 $Bq/m^3$ and $^{11}C$ synthesis was 1,000$Bq/m^3$. Conclusion : $^{11}C$ radioactive gas that was ejected out of the Hot cell, with the use of a Tedlar gas sampling bag stored inside. A compound of 11C is not absorbed onto activated carbon filter. But can block the release out by storing in a Tedlar gas sampling bag. We was able to reduce the radiation exposure of the worker by efficient radiation protection.

  • PDF

중수로 환형기체 계통의 방사능 inventory 평가

  • Kim, Jin-Tae;Kang, Deok-Won;Son, Uk
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.90-95
    • /
    • 2003
  • Chemical management of annulus gas system is carried out for the purpose of ensuring the safety and reliability of the system via securing the integrity of the system, detecting the D$_2$O in-leakage of coolant and/or moderator, and reducing the radiation dose. Since the quality of CO_2$ gas, which is used as a filling gas for annulus gas system at CANDU plants, has a propound effect on the integrity of the system material and the radiation dose, CO_2$ gas of high quality is needed. If the quality of CO_2$ gas does not meet the specification, it may give rise to undesirable effect not only on the annulus gas system, but also on the environment due to the production of radioactive nuclei. Therefore, it is very important to check the impurities of CO_2$ gas. Based on this background, the inventories of C-14 and Ar-41 in CO_2$ gas that is supplied as annulus gas were estimated using the data on concentrations of the impurities of $CO_2$ such as C, N_2$ and Ar. The results of this study is expect to give useful information on optimization of CO_2$ impurities maintenance and management of gaseous radioactive wastes produced at CANDU plants.

  • PDF

Decontamination Performance Assessment for the Plasma Arc Vitrification pilot plant on the basis of Trial Burn Results(I) - Decontamination Characteristics for Hazardous Metal, Radioactive surrogate and Radioactive Tracer in Off-gas (시험연소결과에 근거한 플라즈바 아크방식 유리화 시험 설비의 제염성능 평가(I) - 배기가스중의 유해중금속, 방사성핵종 모의물질 및 방사성핵종 제염특성 -)

  • Chae, Gyung-Sun;Park, Youn-Hwan;Min, Byong-Yun;Chang, Jae-Ock;Park, Jun-Yong;Jeong, Weon-Ik;Moon, Byung-Sik
    • Journal of Radiation Protection and Research
    • /
    • v.25 no.2
    • /
    • pp.99-107
    • /
    • 2000
  • Through the results of off-gas analysis at 3 sampling points in Plasma Arc Melting vitrification pilot plant, it was evaluated the partitioning of spiked materials in off-gas and the decontamination characteristic of off-gas treatment system. Spiked materials are hazard_us heavy metals(Pb, Cd, Hg), radioactive surrogate(Co, Cs) and radioactive materials($^{60}Co,\;^{137}Cs$). Through the Trial burn tests, Decontamination factor of spiked materials in off-gas treatment system is calculated.

  • PDF

On the Sampling and Transport of Radioactive Aerosols from Waste Thermal Process

  • Yang, Hee-Chul;Kim, Joon-Hyung;Yong Kang
    • Nuclear Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.269-279
    • /
    • 1997
  • The errors associated with incorrect sampling and transport of radioactive aerosol from radwaste thermal process off-gas are analyzed and the conditions of representative sampling and correct transport of radioactive aerosol for off-gas system evaluation are discussed. An estimation method of sampling errors for individual radionuclides is proposed and applied to simulated vitrification melter aerosols. Prediction methods for particle deposition in sample transport tube under laminar as well as turbulent flow conditions are also described by example calculations with simulated incinerator off-gas From the results of example calculations and plots, instrumental and operational conditions of radioactive aerosol sampling system with minimized errors and correction methods for nonideal sampling and transport are recommended.

  • PDF

Thermal conductivity properties of cement matrix utilizing diatomite and silica gel (규조토 및 실리카겔을 혼입한 시멘트 경화체의 열전도율 특성)

  • Kim, Ki-Hoon;Pyeon, Su-Jeong;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.230-231
    • /
    • 2018
  • Recently, the danger for radioactive materials has become a hot topic. Beginning with the Chernobyl nuclear accident in 1996, in 2011, the Fukushima nuclear power plant in Japan suffered major damage such as large-scale casualties and radioactive dangerous area selection. Concerns about leakage of radioactive materials due to recent earthquakes have been deepening in Korea, such as Wolsong Nuclear Power Plant in Gyeongju, and there is a growing interest in the safety of radioactive materials through the media and the media. However, the route to exposure to radioactive materials is not limited to these large-scale nuclear accidents. Typical examples of this are radioactive substances exposed in daily life. In the case of radon gas, the danger is being revealed through current events programs and news, and natural radiation exposure is attracting attention.

  • PDF