• Title/Summary/Keyword: Radioactive

Search Result 7,905, Processing Time 0.076 seconds

Database Basic Design for Safe Management Radioactive Waste (방사성폐기물 안전관리 데이터베이스 기본설계)

  • 손동찬;안경일;정덕진;조용백
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.470-483
    • /
    • 2003
  • As the amount of radioactive waste and related information to be managed are increasing, some organizations are trying or planning to computerize the management on radioactive waste. When we consider that information on safe management of radioactive waste should be used In association with national radioactive waste management project, standardization of data form and its protocol is required. Korea Institute of Nuclear Safety(KINS) will establish and operate nationwide integrated database in order to effectively manage a large amount of information on national radioactive waste. This database allows not only to trace and manage the trend of radioactive waste occurrence and in storage but also to produce reliable analysis results for the quantity accumulated. Consequently, we can provide necessary information for national radioactive waste management policy and related industry's planing. This study explains the database design which is the essential element for information management.

  • PDF

Internal Dose Assessment of Worker by Radioactive Aerosol Generated During Mechanical Cutting of Radioactive Concrete (원전 방사성 콘크리트 기계적 절단의 방사성 에어로졸에 대한 작업자 내부피폭선량 평가)

  • Park, Jihye;Yang, Wonseok;Chae, Nakkyu;Lee, Minho;Choi, Sungyeol
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2
    • /
    • pp.157-167
    • /
    • 2020
  • Removing radioactive concrete is crucial in the decommissioning of nuclear power plants. However, this process generates radioactive aerosols, exposing workers to radiation. Although large amounts of radioactive concrete are generated during decommissioning, studies on the internal exposure of workers to radioactive aerosols generated from the cutting of radioactive concrete are very limited. In this study, therefore, we calculate the internal radiation doses of workers exposed to radioactive aerosols during activities such as drilling and cutting of radioactive concrete, using previous research data. The electrical-mobility-equivalent diameter measured in a previous study was converted to aerodynamic diameter using the Newton-Raphson method. Furthermore, the specific activity of each nuclide in radioactive concrete 10 years after nuclear power plants are shut down was calculated using the ORIGEN code. Eventually, we calculated the committed effective dose for each nuclide using the IMBA software. The maximum effective dose of 152Eu constituted 83.09% of the total dose; moreover, the five highest-ranked elements (152Eu, 154Eu, 60Co, 239Pu, 55Fe) constituted 99.63%. Therefore, we postulate that these major elements could be measured first for rapid radiation exposure management of workers involved in decommissioning of nuclear power plants, even if all radioactive elements in concrete are not considered.

Determination of Thyroid Secretion Rate in Rabbit (토끼의 갑상선 측정)

  • 이종진;윤세중
    • The Korean Journal of Zoology
    • /
    • v.3 no.1
    • /
    • pp.19-23
    • /
    • 1960
  • A method for determination of thyroid secretion rate in rabbit by means of radioactive iodine presented. After injection of radioactive iodine, in vivo determination so f radioactivity in thyroid gland were made during a 19 day-experimental period. In the same period blood samples were drawn and analyzed for protein-bound iodine (PBI) and for protein-bound radioactive iodine(PBI181). A rate constant for secretion of thyroid hormone was calculated from the disappearance rate of radioactive iodine in thyroid gland. The secretion rate of radioactive hormone iodine was calculated by multiplying this rate constant by the amount of radioactive iodine present in thyroid gland. Assuming that the specific radioactiveness of the circulating thyroid hormone and of the hormone just secreted were identical , thyroid secretion rate was calculated by the equation. {{{{ { Secreted hormone-iodine , gamma /hr} over { Secreted hormone-I^131, % dose/hr }= { PBI, ${\gamma}$/ml.Serum} over { PBI^131 , % dose/ml . Serum } }} The method presented consisted of measurements for series of independent criteria on thyroid function, and the resulting thyroid secretion rate was calculated by combination of those.

  • PDF

Image Reconstruction Techniques for Radioactive Waste Assay by Tomographic Gamma Scanning Method

  • Zhang Quanhu;Kim Ki-Hong;Hong Kwon-Pyo
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.126-140
    • /
    • 2005
  • The tomographic gamma scanner (TGS) method, a further of extension of segmented gamma scanner (SGS), is most accurate and precise for assaying heterogeneous drummed nuclear radioactive waste; it is widely used in nuclear power plants and radioactive waste storages and disposal sites. The transmission and emission images are reconstructed by image reconstruction techniques. In the paper, the principle of TGS is introduced; image reconstruction techniques are discussed as well; finally, it is demonstrated that TGS method performance.

  • PDF

Thermal conductivity properties of cement matrix utilizing diatomite and silica gel (규조토 및 실리카겔을 혼입한 시멘트 경화체의 열전도율 특성)

  • Kim, Ki-Hoon;Pyeon, Su-Jeong;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.230-231
    • /
    • 2018
  • Recently, the danger for radioactive materials has become a hot topic. Beginning with the Chernobyl nuclear accident in 1996, in 2011, the Fukushima nuclear power plant in Japan suffered major damage such as large-scale casualties and radioactive dangerous area selection. Concerns about leakage of radioactive materials due to recent earthquakes have been deepening in Korea, such as Wolsong Nuclear Power Plant in Gyeongju, and there is a growing interest in the safety of radioactive materials through the media and the media. However, the route to exposure to radioactive materials is not limited to these large-scale nuclear accidents. Typical examples of this are radioactive substances exposed in daily life. In the case of radon gas, the danger is being revealed through current events programs and news, and natural radiation exposure is attracting attention.

  • PDF

Deployment of Radioactive Waste Disposal Facility with the Introduction of Nuclear Power Plants (NPP) in Kenya

  • Shadrack, A.;Kim, C.L.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • v.1 no.1
    • /
    • pp.37-47
    • /
    • 2013
  • This paper describes basic plans for the development of a radioactive waste disposal facility with the introduction of Nuclear Power Plants (NPPs) for Kenya. The specific objective of this study was to estimate the total projected waste volumes of low- and intermediate-level radioactive waste (LILW) expected to be generated from the Kenyan nuclear power programme. The facility is expected to accommodate LILW to be generated from operation and decommissioning of nuclear power plants for a period of 50 years. An on-site storage capacity of 700 $m^3$ at nuclear power plant sites and a final disposal repository facility of more than 7,000 $m^3$ capacity were derived by considering Korean nuclear power programme radioactive waste generation data, including Kori, Hanbit, and APR 1400 nuclear reactor data. The repository program is best suited to be introduced roughly 10 years after reactor operation. This study is important as an initial implementation of a national LILW disposal program for Kenya and other newcomer countries interested in nuclear power technology.

A Study on Annual Atmospheric Dispersion Factors Between Continuous and Purge Releases of Gaseous Radioactive Effluents

  • Kim, Na-Hyun;Hwang, Won-Tae;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.177-186
    • /
    • 2021
  • Radioactive materials from nuclear power facilities can be released into the atmosphere through various channels. Recently, the dispersion of radioactive materials has become critical issue in Korea after Kori Unit 1 and Wolsong Unit 1 were permanently shut down. In this study, annual atmospheric dispersion factors were compared based on the continuous release and purge release using the XOQDOQ computer program, a method for calculating atmospheric dispersion factors at commercial nuclear power stations. The meteorological data analyzed in this study was based on the Shin Kori nuclear power meteorological tower which has the largest operating nuclear power plants in Korea, for three years (from 2008 to 2010). The analysis results of the dispersion factor of the radioactive material release obtained using the XOQDOQ program showed that the difference between the continuous release and purge release was within two times. This study will be valuable helpful for revealing the uncertainty of the predictive atmospheric dispersion factor to achieve regulation.

Study on Rainfall Infiltration Into Vault of Near-surface Disposal Facility Based on Various Disposal Scenarios

  • Kwon, Mijin;Kang, Hyungoo;Cho, Chunhyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.503-515
    • /
    • 2021
  • In this study, rainfall infiltration in vault of the second near-surface disposal facility was evaluated on the basis of various disposal scenarios. A total of four different disposal scenarios were examined based on the locations of the radioactive waste containers. A numerical model was developed using the FEFLOW software and finite element method to simulate the behavior of infiltrated water in each disposal scenario. The effects of the disposal scenarios on the infiltrated water were evaluated by estimating the flux of the infiltrated water at the vault interfaces. For 300 years, the flux of infiltrated water flowing into the vault was estimated to be 1 mm/year or less for all scenario. The overall results suggest that when the engineered barriers are intact, the flux of infiltrated water cannot generate a sufficient pressure head to penetrate the vault. In addition, it is confirmed that the disposal scenarios have insignificant effects on the infiltrated water flowing into the vault.

Evaluation of Physical Properties of Recycled Cement Powder for Recycling Radioactive Waste Concrete (방사화된 폐콘크리트의 고화재 활용을 위한 재생시멘트 분말의 물성 평가)

  • Choi, Yu-Jin;Kim, Ji-Hyun;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.305-306
    • /
    • 2023
  • Recently, as the radioactive waste disposal facility becomes scarce, the importance of efficient disposal of waste from nuclear power plants is increasing. This study was conducted to utilize radioactive waste concrete powder as solidifying agent for radioactive waste treatment. Paste with an age of more than one year was used with a disk mill to have a particle size of 150㎛ or less, and treated at temperatures of 500℃, 600℃ and 700℃ for 2 hours. In order to simulate the radioactive cement powder, aqueous solutions of Di-water, CsCl 1M, SrCl2 1M and CoCl2 1M were used as blending water at W/C 0.7 and to improve fluidity, polycarboxylate type superplasticizer was used at 0.4 wt.% based on the weight of recycled cement paste powder. Characterisation was carried out using vicat method, strength and density.

  • PDF