DOI QR코드

DOI QR Code

Internal Dose Assessment of Worker by Radioactive Aerosol Generated During Mechanical Cutting of Radioactive Concrete

원전 방사성 콘크리트 기계적 절단의 방사성 에어로졸에 대한 작업자 내부피폭선량 평가

  • Park, Jihye (Korea Advanced Institute of Science and Technology) ;
  • Yang, Wonseok (Korea Advanced Institute of Science and Technology) ;
  • Chae, Nakkyu (Korea Advanced Institute of Science and Technology) ;
  • Lee, Minho (Korea Advanced Institute of Science and Technology) ;
  • Choi, Sungyeol (Korea Advanced Institute of Science and Technology)
  • Received : 2020.03.17
  • Accepted : 2020.06.10
  • Published : 2020.06.30

Abstract

Removing radioactive concrete is crucial in the decommissioning of nuclear power plants. However, this process generates radioactive aerosols, exposing workers to radiation. Although large amounts of radioactive concrete are generated during decommissioning, studies on the internal exposure of workers to radioactive aerosols generated from the cutting of radioactive concrete are very limited. In this study, therefore, we calculate the internal radiation doses of workers exposed to radioactive aerosols during activities such as drilling and cutting of radioactive concrete, using previous research data. The electrical-mobility-equivalent diameter measured in a previous study was converted to aerodynamic diameter using the Newton-Raphson method. Furthermore, the specific activity of each nuclide in radioactive concrete 10 years after nuclear power plants are shut down was calculated using the ORIGEN code. Eventually, we calculated the committed effective dose for each nuclide using the IMBA software. The maximum effective dose of 152Eu constituted 83.09% of the total dose; moreover, the five highest-ranked elements (152Eu, 154Eu, 60Co, 239Pu, 55Fe) constituted 99.63%. Therefore, we postulate that these major elements could be measured first for rapid radiation exposure management of workers involved in decommissioning of nuclear power plants, even if all radioactive elements in concrete are not considered.

원전 해체 공정 중 다량의 콘크리트 방사성 폐기물의 절단 과정에서 불가피하게 방사성 에어로졸이 생성된다. 방사성 에어로졸은 인체 호흡기 흡착에 의한 내부피폭을 유발하기 때문에 작업자의 방사선 방호를 위한 내부피폭평가가 필수적으로 시행되어야 한다. 그러나 실제 작업환경의 에어로졸 특성값을 사용하기에는 선행 연구가 미비하며 콘크리트에 포함된 방사성 핵종의 수가 많기 때문에 정확한 작업자 내부피폭평가를 위해서는 상당한 시간과 인력이 필요하다. 따라서, 본 연구에서는 사전 연구된 콘크리트 에어로졸 특성값을 활용하여 원전 해체 전 절단 작업자의 내부 피폭량을 빠르게 예측할 수 있는 새로운 방법론을 제시하고자 한다. 본 연구팀은 콘크리트 절단 시 발생하는 사전 연구에서 발표된 에어로졸의 수농도 크기 분포데이터를 뉴턴-랩슨법을 이용하여 피폭평가 계산에 필요한 방사능중앙 공기중역학직경(Activity Median Aerodynamic Diameter)값으로 변환하였다. 또한 원전 정지 10년 후 비방사능 값을 ORIGEN code로 계산하였으며, 최종적으로 핵종별 예탁유효선량을 IMBA 프로그램을 이용하여 계산하였다. 핵종별 예탁유효선량값을 비교한 결과 152Eu에 의한 최대 예탁유효선량은 전체 선량값의 83.09%를 차지하고, 152Eu를 포함한 상위 5개 원소(152Eu, 154Eu, 60Co, 239Pu, 55Fe)의 경우 최대 99.63%를 차지함을 확인하였다. 따라서 원전 해체 전 콘크리트의 구성 원소 중 상위 5개 주요 원소 측정을 먼저 시행한다면 더 빠르고 원활한 방사능 피폭관리 및 해체 작업 안전성 평가가 가능할 것으로 판단된다.

Keywords

References

  1. I.-S. Gang, Regulation on Radioactive Waste Management and Guidelines on the Collection, Packing, and Management of Radioactive Waste. Korea Atomic Energy Research Institute Technical Report, 14-19, KAERI-2902 (2005).
  2. M. Lippmann and R.E. Albert, "The Effect of Particle Size on the Regional Deposition of Inhaled Aerosols in the Human Respiratory Tract", Am. Ind. Hyg. Assoc. J., 30(3), 257-275 (1969). https://doi.org/10.1080/00028896909343120
  3. L.S. Ruzer and N.H. Harley, Aerosols handbook: measurement, dosimetry, and health effects, 625-626, CRC press, Florida (2012).
  4. K.W. Lee, S.B. Hong, J.H. Park, and U.S. Chung, "Final Status of the Decommissioning of Research Reactors in Korea", J. Nucl. Sci. Technol., 47(12), 1227-1232 (2010). https://doi.org/10.1080/18811248.2010.9720990
  5. K.-Y. Lee, M. Oh, J. Kim, E.-H. Lee, I.-S. Kim, K.-W. Kim, D.-Y. Chung, and B.-K. Seo, "Trends in Technology Development for the Treatment of Radioactive Concrete Waste", J. Nucl. Fuel Cycle Waste Technol., 16(1), 93-105 (2018). https://doi.org/10.7733/jnfcwt.2018.16.1.93
  6. M.H. Lee, W. Yang, N. Chae, and S. Choi, "Performance assessment of HEPA filter against radioactive aerosols from metal cutting during nuclear decommissioning", Nucl. Eng. Technol., 52(5), 1043-1050 (2020). https://doi.org/10.1016/j.net.2019.10.017
  7. M.H. Lee, W. Yang, N. Chae, and S. Choi, "Aerodynamic diameter distribution of aerosols from plasma arc cutting for steels at different cutting power levels", J. Radioanal. Nucl. Chem., 323, 613-624 (2020). https://doi.org/10.1007/s10967-019-06967-y
  8. T. Shimada and T. Tanaka, "Characterization on the radioactive aerosols dispersed during plasma arc cutting of radioactive metal piping", J. Radioanal. Nucl. Chem., 303(2), 1345-1349 (2015). https://doi.org/10.1007/s10967-014-3629-5
  9. Y. Oki, M. Numajiri, T. Suzuki, Y. Kanda, T. Miura, K. Iijima, and K. Kondo, "Particle size and fuming rate of radioactive aerosols generated during the heat cutting of activated metals", Appl. Radiat. Isotopes, 45(5), 553-562 (1994). https://doi.org/10.1016/0969-8043(94)90197-X
  10. V.J. Novick, C.-J. Brodrick, S. Crawford, J. Nasiatka, K. Pierucci, V. Reyes, J. Sambrook, S. Wrobel, and J. Yeary, Aerosol measurements from plasma torch cuts on stainless steel, carbon steel, and aluminum. Argonne National Lab., IL (United States) Report, ANL/TD/CP-88550 (1996).
  11. N. Chae, M.H. Lee, S. Choi, B.G. Park, and J.S. Song, "Aerodynamic diameter and radioactivity distributions of radioactive aerosols from activated metals cutting for nuclear power plant decommissioning", J. Hazard. Mater., 369, 727-745 (2019). https://doi.org/10.1016/j.jhazmat.2019.02.093
  12. J. Bernard, G. Pilot, and J. Grandjean, "Evaluation of various cutting techniques suitable for the dismantling of nuclear components", EUR (Luxembourg) (1998).
  13. F. Azarmi, P. Kumar, and M. Mulheron, "The exposure to coarse, fine and ultrafine particle emissions from concrete mixing, drilling and cutting activities", J. Hazard. Mater., 268-279 (2014).
  14. K. Eckerman, J. Harrison, H.G. Menzel, and C.H. Clement, ICRP publication 119: compendium of dose coefficients based on ICRP publication 60, Annals of the ICRP, 41, 1-130 (2012).
  15. ICRP, ICRP publication 60: 1990 recommendations of the International Commission on Radiological Protection (1991).
  16. F. Paquet, M.R. Bailey, R.W. Leggett, J. Lipsztein, T.P. Fell, T. Smith, D. Nosske, K.F. Eckerman, V. Berkovski, and E. Ansoborlo, ICRP Publication 134: Occupational Intakes of Radionuclides: Part 2, Annals of the ICRP, 45(3-4), 7-349 (2016). https://doi.org/10.1177/0146645316670045
  17. J.C. Evans, E.L. Lepel, R.W. Sanders, C.L. Wilkerson, W. Silker, C.W. Thomas, K.H. Abel, and D.R. Robertson, Long-lived activation products in reactor materials. Pacific Northwest Laboratory Report, 85-89, NUREG/CR-3474 (1984).
  18. R.D. Woodson, Concrete structures: protection, repair and rehabilitation, 1st ed., 39-50, Butterworth-Heinemann, Oxford (2009).
  19. R. Khettabi, V. Songmene, J. Masounave, and I. Zaghbani, "Understanding the formation of nano and micro particles during metal cutting", Int. J. Signal Syst. Control Eng. Appl., 1(3), 203-210 (2008).
  20. IAEA, "Decommissioning Costs of WWER-440 Nuclear Power Plants", IAEA-TECDOC-1322, IAEA, Vienna (2002).
  21. W.C. Hinds, Aerosol technology: properties, behavior, and measurement of airborne particles, 2nd ed., 44-60, John Wiley & Sons, New York (1999).
  22. Baron, P.A. and K. Willeke, Aerosol measurement: principles, techniques, and applications, 2nd ed., 45-60, John Wiley and Sons, New York (2001).
  23. P.F. DeCarlo, J.G. Slowik, D.R. Worsnop, P. Davidovits, and J.L. Jimenez, "Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory", Aerosol Sci. Tech., 38(12), 1185-1205 (2004). https://doi.org/10.1080/027868290903907
  24. T.J. Ypma, "Historical development of the Newton-Raphson method", SIAM review, 37(4), 531-551 (1995). https://doi.org/10.1137/1037125
  25. T.A. Soylev and R. Francois, "Quality of steel-concrete interface and corrosion of reinforcing steel", Cement Concrete Res., 33(9), 1407-1415 (2003). https://doi.org/10.1016/S0008-8846(03)00087-5
  26. U.S. EPA, Methods For Derivation Of Inhalation Reference Concentrations (RfCs) And Application Of Inhalation Dosimetry, U.S. Environmental Protection Agency, Office of Research and Development, Office of Health and Environmental Assessment, Washington D.C., 26-28, EPA/600/8-90/066F (1994).
  27. J.W. Marsh, A. Birchall, and N.S. Jarvis, "Validation of IMBA and IMBA expertTM" Proc. of the 2002 Towards harmonisation of radiation protection in Europe: European IRPA Congress, vol. 37, 243-278, October 8-11, 2002, Italy.
  28. R. Loesch, Guidance on the Use of IMBA Software for DOE Safety Applications, US Department of Energy Document, 1-39, DOE-HS-0002 (2006).
  29. ICRP, ICRP Publication 68: Dose Coefficients for Intakes of Radionuclides by Workers, Annals of the ICRP, 24(4) (1994).
  30. E.H. Carbaugh, D.E. Bihl, J.A. Maclellan, C.L. Antonio, and R.L. Hill, Methods and Models of the Hanford Internal Dosimetry Program, Pacific Northwest National Lab (PNNL) Report, PNNL-MA-860 (2009).

Cited by

  1. Preliminary Evaluation of Radiological Impact for Domestic On-road Transportation of Decommissioning Waste of Kori Unit 1 vol.18, pp.4, 2020, https://doi.org/10.7733/jnfcwt.2020.18.4.537