• Title/Summary/Keyword: Radiation treatment therapy

Search Result 1,757, Processing Time 0.026 seconds

Radiation Therapy against Pediatric Malignant Central Nervous System Tumors : Embryonal Tumors and Proton Beam Therapy

  • Lim, Do Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.3
    • /
    • pp.386-392
    • /
    • 2018
  • Radiation therapy is highly effective for the management of pediatric malignant central nervous system (CNS) tumors including embryonal tumors. With the increment of long-term survivors from malignant CNS tumors, the radiation-related toxicities have become a major concern and we need to improve the treatment strategies to reduce the late complications without compromising the treatment outcomes. One of such strategies is to reduce the radiation dose to craniospinal axis or radiation volume and to avoid or defer radiation therapy until after the age of three. Another strategy is using particle beam therapy such as proton beams instead of photon beams. Proton beams have distinct physiologic advantages over photon beams and greater precision in radiation delivery to the tumor while preserving the surrounding healthy tissues. In this review, I provide the treatment principles of pediatric CNS embryonal tumors and the strategic improvements of radiation therapy to reduce treatment-related late toxicities, and finally introduce the increasing availability of proton beam therapy for pediatric CNS embryonal tumors compared with photon beam therapy.

The Availability of Diagnostic and Treatment Planning Computer in 700 Cancer Patients and Magnification Devices for CT (암환자 700예의 진단 및 치료 CT 이용율과 CT 확대장치)

  • Lee, Gui-Won;Park, Joo-Sun;Han, Yong-Moon;Yoon, Sei-Chul;Shinn, Kyung-Sub
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.2 no.1
    • /
    • pp.81-85
    • /
    • 1987
  • It has been evident since 1972 that computed tomography(CT) can play an important role in treatment and managment of the cancer patients as four steps; diagnosis, satging Treatment and follow-up. In this paper, we intended to investigate the availability of CT scan and treatment planning computer in 700 cancer patients who have undergone radiation therapy at the division of radiation therapy, Kangnam St. Mary's Hospital, Catholic Medical College between Mar. 1983 and Dec. 1985. The result were as follow; 1. Of 700 irradiated cancer patients, 342 patients ($48.9\%$) were performed CT scan prior to radiation therapy. 2. The distribution of lesions in 342 patients having CT scans was like this; CNS (83 of 104 patients, $79.8\%$), abdomen (44 of 76 patients, $57.9\%$), pelvis (100 of 188 patients, $53.2\%$) etc. in order. 3. The treatment planning computer were used in 280 cancer patients ($40\%$). 4. Of the 280 cancer patients using treatment planning computer, 167 patients ($59.6\%$) applied diagnostic CT scan and remaining 113 patients ($40.4\%$) were made body contour to be used for radiation therapy planning by the treatment planning computer. Authors also made some magnification devices used for small multiformat CT images to magnify into life size, consisting of overhead projector (3M) I.V. stand and mirror. These enabled us to make less errors in tracing the small-sized CT images during input of the anatomical data into the treatment planning computer.

  • PDF

Literature Review of Clinical Usefulness of Heavy Ion Particle as an New Advanced Cancer Therapy (첨단 암 치료로서 중입자치료의 임상적 유용성에 대한 고찰)

  • Choi, Sang Gyu
    • Journal of radiological science and technology
    • /
    • v.42 no.6
    • /
    • pp.413-422
    • /
    • 2019
  • Heavy ion particle, represented carbon ion, radiotherapy is currently most advanced radiation therapy technique. Conventional radiation therapy has made remarkable changes over a relatively short period of time and leading various developments such as intensity modulated radiation therapy, 4D radiation therapy, image guided radiation therapy, and high precisional therapy. However, the biological and physical superiority of particle radiation, represented by Bragg peak, can give the maximum dose to tumor and minimal dose to surrounding normal tissues in the treatment of cancers in various areas surrounded by radiation-sensitive normal tissues. However, despite these advantages, there are some limitations and factors to consider. First, there is not enough evidence, such as large-scale randomized, prospective phase III trials, for the clinical application. Secondly, additional studies are needed to establish a very limited number of treatment facilities, uncertainty about the demand for heavy particle treatment, parallel with convetional radiotherapy or indications. In addition, Bragg peak of the heavy particles can greatly reduce the dose to the normal tissues front and behind the tumor compared to the photon or protons. High precision and accuracy are needed for treatment planning and treatment, especially for lungs or livers with large respiratory movements. Currently, the introduction of the heavy particle therapy device is in progress, and therefore, it is expected that more research will be active.

Treatment of pathologic fracture following postoperative radiation therapy: clinical study

  • Kim, Chul-Man;Park, Min-Hyeog;Yun, Seong-Won;Kim, Jin-Wook
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.37
    • /
    • pp.31.1-31.5
    • /
    • 2015
  • Background: Pathologic fractures are caused by diseases that lead to weakness of the bone structure. This process sometimes occurs owing to bony change after radiation therapy. Treatment of pathologic fractures may be difficult because of previous radiation therapy. Methods: In this study, we analyzed clinical and radiographic data and progress of five patients with mandibular pathological fractures who had received postoperative radiation therapy following cancer surgery. Result: Patients received an average radiation dose of 59.2 (SD, 7.2) Gy. Four of five patients exhibited bone union regardless of whether open reduction and internal fixation (OR/IF) was performed. Patients have the potential to heal after postoperative radiation therapy. Treatment of a pathologic fracture following postoperative radiation therapy, such as traditional treatment for other types of fractures, may be performed using OR/IF or CR. OR/IF may be selected in cases of significant bone deviation, small remaining bone volume, or occlusive change. Conclusion: Patients have the potential to heal after postoperative radiation therapy.

IMAGING IN RADIATION THERAPY

  • Kim Si-Yong;Suh Tae-Suk
    • Nuclear Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.327-342
    • /
    • 2006
  • Radiation therapy is an important part of cancer treatment in which cancer patients are treated using high-energy radiation such as x-rays, gamma rays, electrons, protons, and neutrons. Currently, about half of all cancer patients receive radiation treatment during their whole cancer care process. The goal of radiation therapy is to deliver the necessary radiation dose to cancer cells while minimizing dose to surrounding normal tissues. Success of radiation therapy highly relies on how accurately 1) identifies the target and 2) aim radiation beam to the target. Both tasks are strongly dependent of imaging technology and many imaging modalities have been applied for radiation therapy such as CT (Computed Tomography), MRI (Magnetic Resonant Image), and PET (Positron Emission Tomogaphy). Recently, many researchers have given significant amount of effort to develop and improve imaging techniques for radiation therapy to enhance the overall quality of patient care. For example, advances in medical imaging technology have initiated the development of the state of the art radiation therapy techniques such as intensity modulated radiation therapy (IMRT), gated radiation therapy, tomotherapy, and image guided radiation therapy (IGRT). Capability of determining the local tumor volume and location of the tumor has been significantly improved by applying single or multi-modality imaging fur static or dynamic target. The use of multi-modality imaging provides a more reliable tumor volume, eventually leading to a better definitive local control. Image registration technique is essential to fuse two different image modalities and has been In significant improvement. Imaging equipments and their common applications that are in active use and/or under development in radiation therapy are reviewed.

Intensity-modulated radiation therapy: a review with a physics perspective

  • Cho, Byungchul
    • Radiation Oncology Journal
    • /
    • v.36 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Intensity-modulated radiation therapy (IMRT) has been considered the most successful development in radiation oncology since the introduction of computed tomography into treatment planning that enabled three-dimensional conformal radiotherapy in 1980s. More than three decades have passed since the concept of inverse planning was first introduced in 1982, and IMRT has become the most important and common modality in radiation therapy. This review will present developments in inverse IMRT treatment planning and IMRT delivery using multileaf collimators, along with the associated key concepts. Other relevant issues and future perspectives are also presented.

Image Guided Radiation Therapy

  • Ui-Jung Hwang;Byong Jun Min;Meyoung Kim;Ki-Hwan Kim
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.37-52
    • /
    • 2022
  • Over the past decades, radiation therapy combined with imaging modalities that ensure optimal image guidance has revolutionized cancer treatment. The two major purposes of using imaging modalities in radiotherapy are to clearly delineate the target prior to treatment and set up the patient during radiation delivery. Image guidance secures target position prior to and during the treatment. High quality images provide an accurate definition of the treatment target and the possibility to reduce the treatment margin of the target volume, further lowering radiation toxicity and improving the quality of life of cancer patients. In this review, the various types of image guidance modalities used in radiation therapy are distinguished into ionized (kilovoltage and megavoltage image) and nonionized imaging (magnetic resonance image, ultrasound, surface imaging, and radiofrequency). The functional aspects, advantages, and limitation of imaging using these modalities are described as a subsection of each category. This review only focuses on the technological viewpoint of these modalities and any clinical aspects are omitted. Image guidance is essential, and its importance is rapidly increasing in modern radiotherapy. The most important aspect of using image guidance in clinical settings is to monitor the performance of image quality, which must be checked during the periodic quality assurance process.

Intensity Modulated Radiation Therapy of Brain Tumor

  • Kim, Sung-Kyu;Kim, Myung-Se
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.61-64
    • /
    • 2002
  • As intensity modulated radiation therapy compared with conventional radiation therapy, tumor target dose increased and normal tissues and critical organs dose reduced. In brain tumor, treatment planning of intensity modulated radiation therapy was practiced in 4MV, 6MV, 15MV X-ray energy. In these X-ray energy, was considered the dose distribution and dose volume histogram. As 4MV X-ray compared with 6MV and 15MV, maximum dose of right optic-nerve increased 10.1 %, 8.4%. Right eye increased 5.2%, 2.7%. And left optic-nerve, left eye, optic chiasm and brainstem incrased 1.7% - 5.2%. Even though maximum dose of PTV and these critical organs show different from 1.7% - 10.1% according to X-ray energies, these are a piont dose. Therefore in brain tumor, treatment planning of intensity modulated radiation therapy in 9 treatment field showed no relation with energy dependency.

  • PDF

Stereotactic Body Radiation Therapy for Treatment of Spinal Bone Metastasis

  • Cihan, Yasemin Benderli
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.937-938
    • /
    • 2016
  • Stereotactic body radiation therapy (SBRT) appears an effective and safe treatment modality for spinal bone metastasis, which can enhance local control and improve quality of life. Life expectation, predicted fracture risk, localization, quality, size and number of metastasis and presence or absence of nerve compression seem to be important factors in decision-making for treatment. Further studies are needed to identify subsets of patient which will most benefit from treatment.

Quality Assurance in Intensity Modulated Radiation Theray (세기조절방사선치료의 정도관리)

  • Kim, Sung-Kyu
    • Journal of Yeungnam Medical Science
    • /
    • v.25 no.2
    • /
    • pp.85-91
    • /
    • 2008
  • Intensity-modulated radiation therapy (IMRT) is believed to be one of the best radiation treatment techniques. IMRT is able to deliver fatal doses of radiation to the tumor region with minimal exposure of critical organs. It is essential to have a comprehensive quality assurance program to assure precision and accuracy in treatment, due to the character of IMRT. We applied quality assurance technique to the Eclipse treatment planning system and sought to determine its effectiveness in patient treatment planning. An acrylic phantom, film, and an ionization chamber were used in this study.

  • PDF