• 제목/요약/키워드: Radiation stress

검색결과 402건 처리시간 0.029초

Toward early scientific results on AGNs: 'KAVA'(KVN and VERA array) joint AGN WG report

  • 손봉원;;;이상성
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.238.2-238.2
    • /
    • 2012
  • We report the results of KVN-VERA('KAVA'; KVN and VERA Arrary) AGN WG test observation in 2011 and 2012. The results from these commisioning years show that 'KAVA' is able to produce noble images of radio loud AGNs at 22 and 43GHz. This dedicated high frequency VLBI facility will be especially competitive for the regions where conventional low freuquency facilities see the optically thick part of synchrotron radiation. In the second part of this talk, we report the early science activities of the AGN WG. Sgr A*, Jet acceleration zone of M87, extremely young radio galaxies are the prime cadidates of the joint activities. Lastly we will stress how the phase-referencing 'KAVA' does enhance the imaging sensitivity and open new era of VLBI AGN researches.

  • PDF

100kVA 주상용 몰드 변압기의 온도분포 해석 (The Temperature Distribution Analysis of Mold transformer)

  • 조한구;이운용
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 춘계학술대회 논문집 방전 플라즈마 유기절연재료 초전도 자성체연구회
    • /
    • pp.125-129
    • /
    • 2004
  • The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and low loss, but it needs some cooling method because heat radiation between each winding is difficult. The life of transformer is significantly dependent on the thermal behavior in windings. Many transformer designers have calculated temperature distribution and hot spot point by FEM(finite element method) to analyze winding temperature rise. In this paper, the temperature distribution and thermal stress analysis of 100kVA pole cast resin transformer for power distribution are investigated by FEM program.

  • PDF

원자력시스템에서 순차적 다중실패상태의 신뢰도 평가 방법에 관한 고찰 (A Study on Reliability Estimation of Sequential-ordered Multiple Failure Modes in Nuclear System)

  • 한석중
    • 한국안전학회지
    • /
    • 제26권4호
    • /
    • pp.7-13
    • /
    • 2011
  • A study on reliability estimation of sequential-ordered multiple failure modes, which are sequentially ordered between failure modes in a considering system, was performed. Especially, an approach to estimate the probabilities of failure modes has been proposed under an assumption that failure modes are mutually exclusive and sequentially ordered by only a critical variable. A feasibility of the proposed approach were studied by a practical example, which is a reliability estimation of passive safety systems for a probabilistic safety assessment(PSA) of a very high temperature reactor(VHTR) that is under development as a future nuclear system with enhanced safety features. It is difficult to define a robust failure state of this nuclear system because of its enhanced radiation release characteristics, so the new approach is a useful concept to estimate not only its safety but also a PSA. A feasibility study applied two failure modes(e.g., small and large release of radioactive materials) with considering the integrated behavior of this nuclear system. It is expected that the multiple release states for a practical estimation can be easily extended to the aforementioned example. It was found out that the proposed approach was a useful technique to cover the unfavorable features of this nuclear system as to performing a VHTR PSA.

Dry storage of spent nuclear fuel and high active waste in Germany-Current situation and technical aspects on inventories integrity for a prolonged storage time

  • Spykman, Gerold
    • Nuclear Engineering and Technology
    • /
    • 제50권2호
    • /
    • pp.313-317
    • /
    • 2018
  • Licenses for the storage of spent nuclear fuel (SNF) and vitrified highly active waste in casks under dry conditions are limited to 40 years and have to be renewed for prolonged storage periods. If such a license renewal has to be expected since as in accordance with the new site selection procedure a final repository for spent fuel in Germany will not be available before the year 2050. For transport and possible unloading and loading in new casks for final storage, the integrity and the maintenance of the geometry of the cask's inventory is essential because the SNF rod cladding and the cladding of the vitrified highly active waste are stipulated as a barrier in the storage concept. For SNF, the cladding integrity is ensured currently by limiting the hoop stress and hoop strain as well as the maximum temperature to certain values for a 40-year storage period. For a prolonged storage period, other cladding degradation mechanisms such as inner and outer oxide layer formation, hydrogen pick up, irradiation damages in cladding material crystal structure, helium production from alpha decay, and long-term fission gas release may become leading effects driving degradation mechanisms that have to be discussed.

의료용 초음파탄성영상법 (Medical Ultrasonic Elasticity Imaging Techniques)

  • 정목근
    • 비파괴검사학회지
    • /
    • 제32권5호
    • /
    • pp.573-584
    • /
    • 2012
  • 유방이나 전립선과 같은 연조직에서 발생하는 암이나 종양은 주위 조직보다 단단한 경향을 가진다. 하지만 초음파 B-mode 영상을 보면 암은 주위 조직과 거의 비슷하여 구별하기 어렵다. 따라서 조직의 단단한 정도를 영상화하면 더 정량적인 정보를 제공해 진단에 도움을 줄 수 있다. 초음파탄성영상은 측정하고자 하는 연조직에 기계적인 힘을 가하고 변형된 정도를 측정하여 영상화 한다. 탄성영상은 기존의 초음파 영상 진단기법과 더불어 종양을 진단하는 유용한 방법으로 자리매김하고 있다. 본 논문에서는 지금까지 발표된 다양한 탄성영상 방법을 분류하고 각 방법의 원리, 특성 등을 살펴본다.

적외선 센서용 극저온 용기의 냉각특성에 관한 실험적 연구 (An Experimental Study on the Cooling Characteristics of an Infrared Detector Cryochamber)

  • 강병하;이정훈;김호영
    • 설비공학논문집
    • /
    • 제16권10호
    • /
    • pp.889-894
    • /
    • 2004
  • Infrared (IR) detectors are widely used for many applications, such as temperature measurement, intruder and fire detection, robotics and industrial equipment, thermoelstic stress analysis, medical diagnostics, and chemical analysis. Quantum detectors commonly need to be refrigerated below 80 K, and thus a cooling system should be equipped together with the detector system. The cooling load, which should be removed by the cooling system to maintain the nominal operating temperature of the detector, critically depends on the insulation efficiency of the cryochamber housing the detector. Thermal analysis of cryochamber includes the conduction heat transfer through a cold well, the gases conduction and gas outgassing, as well as radiation heat transfer, The transient cooling characteristics of an infrared detector cryochamber are investigated experimentally in the present study. The transient cooling load increases as the gas pressure is increased. Gas pressure becomes significant as the cooling process proceeds. Cool down time is also increased as the gas pressure is increased. It is also found that natural convection effects on cool down time become significant when the gas pressure is increased.

Failure Evaluation Plan of a Reactor Internal Components of a Decommissioned Plant

  • Hwang, Seong Sik;Kim, Sung Woo;Choi, Min Jae;Cho, Sung Hwan;Kim, Dong Jin
    • Corrosion Science and Technology
    • /
    • 제20권4호
    • /
    • pp.189-195
    • /
    • 2021
  • A technology for designing and licensing a dedicated radiation shielding facility needs to be developed for safe and efficient operation an R&D center. Technology development is important for smooth operation of such facilities. Causes of damage to internal structures (such as baffle former bolt (BFB) of pressurized water reactor) of a nuclear power reactor should be analyzed along with prevention and countermeasures for similar cases of other plants. It is important to develop technologies that can comprehensively analyze various characteristics of internal structures of long term operated reactors. In high-temperature, high-pressure operating environment of nuclear power plants, cases of BFB cracks caused by irradiated assisted stress corrosion cracks (IASCC) have been reported overseas. The integrity of a reactor's internal structure has emerged as an important issue. Identifying the cause of the defect is requested by the Korean regulatory agency. It is also important to secure a foundation for testing technology to demonstrate the operating environment for medium-level irradiated testing materials. The demonstration testing facility can be used for research on material utilization of the plant, which might have highest fluence on the internal structure of a reactor globally.

방사선사 조직의 조직유효성에 영향을 미치는 변수에 관한 연구 (A Study on the Variables Affecting on the Organizational Effectiveness of Radiological Technologist)

  • 김선화;김정훈;박은태
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제42권3호
    • /
    • pp.231-238
    • /
    • 2019
  • Medical institutions are abundant in human resources and have a unique structure with diverse professions and various organizational cultures coexist. This organizational culture influences organizational effectiveness and influences the effectiveness of the organization as a factor of leadership and organizational culture. Leadership is an important factor in linking employee behavior to organizational commitment to achieve job satisfaction. The purpose of this study was to analyze the effect of organizational effectiveness on organizational culture, leadership perception, and job stress in a special organization called radiologist. As a result, organizational culture and transformational leadership showed high correlation with 0.627. Among the organizational effectiveness variables, organizational commitment showed the highest influence with transformational leadership(${\beta}=0.284$, p<0.001), and job satisfaction was also the highest with transformational leadership (${\beta}=0.440$, p<0.001). The results showed that the expectation of transformational leadership affects organizational commitment and job satisfaction. In order to expect a positive change in the effectiveness of the organization, the radiologist culture requires an organizational culture that can fully demonstrate autonomy and creativity, and transformational leadership is required for this.

Multiscale simulations for estimating mechanical properties of ion irradiated 308 based on microstructural features

  • Dong-Hyeon Kwak ;Jae Min Sim;Yoon-Suk Chang ;Byeong Seo Kong ;Changheui Jang
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.2823-2834
    • /
    • 2023
  • Austenitic stainless steel welds (ASSWs) of nuclear components undergo aging-related degradations caused by high temperature and neutron radiation. Since irradiation leads to the change of material characteristics, relevant quantification is important for long-term operation, but limitations exist. Although ion irradiation is utilized to emulate neutron irradiation, its penetration depth is too shallow to measure bulk properties. In this study, a systematic approach was suggested to estimate mechanical properties of ion irradiated 308 ASSW. First of all, weld specimens were irradiated by 2 MeV proton to 1 and 10 dpa. Microstructure evolutions due to irradiation in δ-ferrite and austenite phases were characterized and micropillar compression tests were performed. In succession, dislocation density based stress-strain (S-S) relationships and quantification models of irradiation defects were adopted to define phases in finite element analyses. Resultant microscopic S-S curves were compared to verify material parameters. Finally, macroscopic behaviors were calculated by multiscale simulations using real microstructure based representative volume element (RVE). Validity of the approach was verified for the unirradiated specimens such that the estimated S-S curves and 0.2% offset yield strengths (YSs) which was 363.14 MPa were in 10% agreement with test. For irradiated specimens, the estimated YS were 917.41 MPa in 9% agreement.

Electromagnetic-thermal two-way coupling analysis and application on helium-cooled solid blanket

  • Kefan Zhang;Shuai Wang;Hongli Chen
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.927-938
    • /
    • 2023
  • The blanket plays an important role in fusion reactor and stands extremely high thermal and electromagnetic loads during operation situation and plasma disruption event, brings the need for precise thermal and electromagnetic analysis. Since the thermal field and EM field interact with each other nonlinearly, we develop a method of electromagnetic-thermal two-way coupling by using finite element software COMSOL. The coupling analyses of blanket under steady state and MD event are implemented and the results are analyzed. For steady state, the influences of coupling effects are relatively small but still recommended to be considered for a high precision analysis. The influence of thermal field on EM field can't be ignored under MD events. The variation of force density could cause a significant change in stress in certain parts of blanket. The influence of Joule heat during MD event is negligible, yet the potential temperature rise caused by induced current after MD event still needs to be researched.