• Title/Summary/Keyword: Radiation quality

Search Result 1,600, Processing Time 0.03 seconds

QUALITY MANAGEMENT SYSTEM FOR NUCLEAR EDUCATION CENTRES

  • Sadagopan, Geetha;Kim, Hyunkee;Son, Miyeon
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.4
    • /
    • pp.173-176
    • /
    • 2012
  • Quality Management is a recent phenomenon. This is applied to products or services, with an objective to deliver high quality, reliable, worthy, enduring, product or service. The process is considered to have four main components: quality planning, quality control, quality assurance and quality improvement. Focusing on quality control and quality assurance leads to achieving quality management or ensures that an organization or product is consistent. In this paper, the applicable international standard for learning services and for the organization for education and training (learning service provider) is discussed and also the procedure to implement the management system.

Investigation on the techniques of quality control for radiation counting systems (방사선 측정기의 품질관리 기법에 대한 고찰)

  • Song, Byoung-Chul;Kim, Young-Bok;Han, Sun-Ho;Oh, Se-Jin;Lee, Myung-Ho;Song, Kyu-Seok
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.414-420
    • /
    • 2011
  • In this study, radiation measurement system has been investigated to set up for the radioisotopes analysis in the radioactive waste samples after selecting the radiation counters of alpha beta and gamma nuclides. The counting efficiencies for alpha, beta and gamma measurement systems were calibrated. To obtain stability of the radiation detectors, quality control program has been established. Also, minimum detectable activities (MDAs) depending on the type of samples were calculated for increasing the confidence level for analytical result.

X-Rays through the Looking Glass: Mobile Imaging Dosimetry and Image Quality of Suspected COVID-19 Patients

  • Schelleman, Alexandra;Boyd, Chris
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.3
    • /
    • pp.120-126
    • /
    • 2021
  • Background: This paper aims to evaluate the clinical utility and radiation dosimetry, for the mobile X-ray imaging of patients with known or suspected infectious diseases, through the window of an isolation room. The suitability of this technique for imaging coronavirus disease 2019 (COVID-19) patients is of particular focus here, although it is expected to have equal relevance to many infectious respiratory disease outbreaks. Materials and Methods: Two exposure levels were examined, a "typical" mobile exposure of 100 kVp/1.6 mAs and a "high" exposure of 120 kVp/5 mAs. Exposures of an anthropomorphic phantom were made, with and without a glass window present in the beam. The resultant phantom images were provided to experienced radiographers for image quality evaluation, using a Likert scale to rate the anatomical structure visibility. Results and Discussion: The incident air kerma doubled using the high exposure technique, from 29.47 µGy to 67.82 µGy and scattered radiation inside and outside the room increased. Despite an increase in beam energy, high exposure technique images received higher image quality scores than images acquired using lower exposure settings. Conclusion: Increased scattered radiation was very low and can be further mitigated by ensuring surrounding staff are appropriately distanced from both the patient and X-ray tube. Although an increase in incident air kerma was observed, practical advantages in infection control and personal protective equipment conservation were identified. Sites are encouraged to consider the use of this technique where appropriate, following the completion of standard justification practices.

Quality Evaluation of Dried Cooked Rice as Space Food (우주식품 개발을 위한 건조 쌀밥의 품질 평가)

  • Park, Jae-Nam;Song, Beom-Seok;Han, In-Jun;Kim, Jae-Hun;Yoon, Yo-Han;Choi, Jong-Il;Byun, Myung-Woo;Sohn, Hee-Sook;Lee, Ju-Woon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.7
    • /
    • pp.909-913
    • /
    • 2009
  • This study was conducted to investigate the rehydration properties and the sensory quality of sun-dried (SD), hot-air dried (HD), and freeze-dried (FD) cooked rice as space food. Rehydration ratio of HD and FD were significantly higher than those of SD, but there was no significant difference between HD and FD (p<0.05). A cross section of SD showed the smooth surface without any cavities. While HD showed large cavities, many small air cells in FD were observed by a scanning electronic microscope. Stickiness/hardness ratio of HD was similar to that of FD and significantly higher than SD (p<0.05). Also, sensory properties of HD and FD were significantly higher than those of SD, but there were no differences between HD and FD (p<0.05).

Producing Radiotherapy Guidance Movie for patients (방사선치료 안내동영상 제작)

  • Wang, Chul-Hwan;Kang, Seung-Hee;Moon, Bong-Ki;Park, Dong-Wook;Won, Yeong-Jin;Park, Kwang-Hyeon;Kim, Joo-Hyeon;Bang, Seung-Mi
    • Quality Improvement in Health Care
    • /
    • v.19 no.1
    • /
    • pp.56-61
    • /
    • 2013
  • Objectives: This video has been produced to provide better awareness for our patients about radiotherapy treatment for anxiety and stress. This video will give inexperienced patients a better understanding of the processes and expectations of the radiotherapy. We have produced a radiotherapy guidance video regarding work flow and a method of radiotherapy to relieve anxiety and stress. It also improves patients satisfaction and understanding of radiotherapy to provide a high-quality health care for radiotherapy patients with indirect experience. Methods: We have evaluated the effectiveness of the video compared to our existing verbal method. See below for the evaluation criteria; 1) Patients satisfaction rate of guidance 2) a comparison of understanding of radiotherapy 3) a comparison of a time of education for patients 4) a researching of an incidence rate of radiotherapy. Results: When compared to the verbal explanation the patients had a increased level of understanding of the radiotherapy treatment. The time to educate patient was decreased and the level of incidents during the treatment was decreased due to the patient having a better understanding of the whole process. Conclusion : In conclusion, the audiovisual education increased the understanding of radiotherapy for patients compared to verbal education. The video also helped patients to cooperate in treatment room so we can provide premium radiotherapy treatment. By reducing the treatment time and education processa we improved the patients overall experience.

  • PDF

Comparison of Quality of Bologna Sausage Manufactured by Electron Beam or X-Ray Irradiated Ground Pork

  • Shin, Mee-Hye;Lee, Ju-Woon;Yoon, Young-Min;Kim, Jong Heon;Moon, Byeong-Geum;Kim, Jae-Hun;Song, Beom-Suk
    • Food Science of Animal Resources
    • /
    • v.34 no.4
    • /
    • pp.464-471
    • /
    • 2014
  • Ground lean pork was irradiated by an electron beam or X-rays to compare the effects of two types of radiation generated by a linear accelerator on the quality of Bologna sausage as a model meat product. Raw ground lean pork was vacuum packaged at a thickness of 1.5 cm and irradiated at doses of 2, 4, 6, 8, or 10 kGy by an electron beam (2.5 MeV) or X-rays (5 MeV). Solubility of myofibrillar proteins, bacterial counts, and thiobarbituric acid reactive substance (TBARS) values were determined for raw meat samples. Bologna sausage was manufactured using the irradiated lean pork, and total bacterial counts, TBARS values, and quality properties (color differences, cooking yield, texture, and palatability) were determined. Irradiation increased the solubility of myofibrillar proteins in a dose-dependent manner (p<0.05). Bacterial contamination of the raw meat was reduced as the absorbed dose increased, and the reduction was the same for both radiation types. Differences were observed only between irradiated and non-irradiated samples (p<0.05). X-ray irradiation may serve as an alternative to gamma irradiation and electron beam irradiation.

Quality Evaluation of Gamma-Irradiated Tarakjuk Powder, Korean Milk Porridge (감마선 조사에 따른 분말 타락죽의 품질 평가)

  • Han, In-Jun;Song, Beom-Seok;Kim, Jae-Kyung;Park, Jong-Heum;Lee, Ju-Woon;Kang, Il-Jun;Chun, Soon-Sil;Kim, Jae-Hun
    • Journal of Radiation Industry
    • /
    • v.6 no.3
    • /
    • pp.239-244
    • /
    • 2012
  • This study was conducted to investigate bacterial growth, viscosity, color, and sensory properties of gamma-irradiated Tarakjuk powder, a Korean milk porridge powder, at 1, 3, 5, 7, and 10 kGy. The total aerobic bacteria in non-irradiated Tarakjuk powder was $2.56{\log}\;CFU{\cdot}g^{-1}$, whereas it was not observed within the detection limit of $2{\log}\;CFU{\cdot}g^{-1}$ in samples irradiated at more than 1 kGy. Spore-forming bacteria, however, were not observed in all samples within the detection limit of $1{\log}\;CFU{\cdot}g^{-1}$. The viscosity of rehydrated Tarakjuk after gamma irradiation significantly decreased from 16,770 cP to 4,060 cP when irradiated at 10 kGy. The redness ($a^*$ value) and yellowness ($b^*$ value) evaluated using a colorimeter were significantly increased according to the increase in irradiation dose (p<0.05), while there was no difference in color evaluation conducted by panels. The overall acceptance decreased as the irradiation dose increased, and the 5 kGy sample was 4.0 (normal) on a 7-point scale. As a result, it is considered that a gamma irradiation of 5 kGy is enough to sterilize Tarakjuk powder with a acceptable sensory quality.

Guideline on Acceptance Test and Commissioning of High-Precision External Radiation Therapy Equipment

  • Kim, Juhye;Shin, Dong Oh;Choi, Sang Hyoun;Min, Soonki;Kwon, Nahye;Jung, Unjung;Kim, Dong Wook
    • Progress in Medical Physics
    • /
    • v.29 no.4
    • /
    • pp.123-136
    • /
    • 2018
  • The complex dose distribution and dose transfer characteristics of intensity-modulated radiotherapy increase the importance of precise beam data measurement and review in the acceptance inspection and preparation stages. In this study, we propose a process map for the introduction and installation of high-precision radiotherapy devices and present items and guidelines for risk management at the acceptance test procedure (ATP) and commissioning stages. Based on the ATP of the Varian and Elekta linear accelerators, the ATP items were checked step by step and compared with the quality assurance (QA) test items of the AAPM TG-142 described for the medical accelerator QA. Based on the commissioning procedure, dose quality control protocol, and mechanical quality control protocol presented at international conferences, step-by-step check items and commissioning guidelines were derived. The risk management items at each stage were (1) 21 ionization chamber performance test items and 9 electrometer, cable, and connector inspection items related to the dosimetry system; (2) 34 mechanical and dose-checking items during ATP, 22 multileaf collimator (MLC) items, and 36 imaging system items; and (3) 28 items in the measurement preparation stage and 32 items in the measurement stage after commissioning. Because the items presented in these guidelines are limited in terms of special treatment, items and practitioners can be modified to reflect the clinical needs of the institution. During the system installation, it is recommended that at least two clinically qualified medical physicists (CQMP) perform a double check in compliance with the two-person rule. We expect that this result will be useful as a radiation safety management tool that can prevent radiation accidents at each stage during the introduction of radiotherapy and the system installation process.

Evaluating the Effects of Dose Rate on Dynamic Intensity-Modulated Radiation Therapy Quality Assurance

  • Kim, Kwon Hee;Back, Tae Seong;Chung, Eun Ji;Suh, Tae Suk;Sung, Wonmo
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.116-121
    • /
    • 2021
  • Purpose: To investigate the effects of dose rate on intensity-modulated radiation therapy (IMRT) quality assurance (QA). Methods: We performed gamma tests using portal dose image prediction and log files of a multileaf collimator. Thirty treatment plans were randomly selected for the IMRT QA plan, and three verification plans for each treatment plan were generated with different dose rates (200, 400, and 600 monitor units [MU]/min). These verification plans were delivered to an electronic portal imager attached to a Varian medical linear accelerator, which recorded and compared with the planned dose. Root-mean-square (RMS) error values of the log files were also compared. Results: With an increase in dose rate, the 2%/2-mm gamma passing rate decreased from 90.9% to 85.5%, indicating that a higher dose rate was associated with lower radiation delivery accuracy. Accordingly, the average RMS error value increased from 0.0170 to 0.0381 cm as dose rate increased. In contrast, the radiation delivery time reduced from 3.83 to 1.49 minutes as the dose rate increased from 200 to 600 MU/min. Conclusions: Our results indicated that radiation delivery accuracy was lower at higher dose rates; however, the accuracy was still clinically acceptable at dose rates of up to 600 MU/min.

Effects of Low Air Temperature and Low Radiation Conditions on Yield and Quality of Hot Pepper at the Early Growth Stage (생육 초기의 저온·저일조가 고추의 수량과 품질에 미치는 영향)

  • Wi, Seung Hwan;Lee, Hee Ju;Yu, In Ho;Jang, Yoon Ah;Yeo, Kyung Hwan;An, Se Woong;Lee, Jin Hyong;Kim, Sung Kyeom
    • Journal of Environmental Science International
    • /
    • v.29 no.10
    • /
    • pp.989-996
    • /
    • 2020
  • This study was conducted to determine the effect of low temperature and low radiation conditions on the yield and quality of hot pepper at an early growth stage in Korea. In plastic greenhouses, low temperature, low temperature with covered shading treatments were set 17 to 42 days after transplanting. The pepper growing degree days decreased by 5.5% due to the low temperature during the treatment period. Radiation decreased by 74.7% due to the covered shading. After commencing treatments, pepper plant growth decreased with low temperature and low radiation. Analysis of the yield showed that the first harvest was delayed by low radiation. The cumulative yields of 119 days after transplanting were 1,956, 2,171, and 2,018 g/㎡ for control, low temperature, and low temperature with low radiation respectively. Capsaicin and dihydrocapsaicin concentrations in pepper fruit decreased with low temperature and low radiation. To investigate the photosynthetic characteristics according to the treatment, the carbon dioxide reaction curve was analyzed using the biochemical model of photosynthesis. Results showed that the maximum photosynthetic rate, Vcmax (maximum carboxylation rate), J (electric transportation rate), and TPU (triose phosphate utilization) decreased at low temperatures; the maximum photosynthetic rate, J, and gm (dark respiration rate) were reduced by shading. These results indicate that low temperature and low radiation can retard early growth, yield, and quality, but these can also be recovered 119 days after planting. Based on the results, the yield and quality of pepper can recover from abiotic stresses with proper cultivation.