• Title/Summary/Keyword: Radiation heat transfer

Search Result 509, Processing Time 0.028 seconds

A Study on the Radiation and Convection Component Separated from Surface Combined Heat Transfer Coefficient on Dynamic Heat Load Simulation (표면 열전달율의 복사.대류성분 분리와 비정상 열부하 계산에 관한 연구)

  • Kim, Young-Tag;Choi, Chang-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.3
    • /
    • pp.1-9
    • /
    • 2005
  • The purpose of this paper was to analyze the influence of radiation and convection component separated from surface heat combined transfer coefficient on dynamic Heat load simulation. In general, it was not considered the mutual radiation of walls that heat load simulation calculated by surface combined heat transfer coefficient. In order to solve this problem, we had developed new simulation program to calculate radiation heat transfer and convection heat transfer respectively, and verified the influence of radiation component with this new program, in indoor heat transfer process.

Numerical Analysis of Natural Convection-Radiation Heat Transfer in an Enclosure Containing Absorbing, emitting and Linear Anisotropic Scattering Medium (흡수,방사 및 선형비등방 산란 매질을 포함하는 밀폐공간내의 자연대류- 복사열전달에 대한 수치해석)

  • 차상명;김종열;박희용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.952-964
    • /
    • 1992
  • The interaction of natural convection and radiation heat transfer in a two dimensional square enclosure containing absorbing, emitting and linear anisotropically scattering gray medium is numerically analyzed. P-1 and P-3 approximation is introduced to calculate radiation heat transfer. The effects of scattering albedo, wall emissivity, scattering anisotropy, and optical thickness on the characteristics of the flow and temperature field and heat transfer are investigated. Temperature and velocity profiles depend a great deal on the scattering albedo, and the importance of this effect increases with decrease in albelo. Planck number is another important parameter in radiation heat transfer. The increase in scattering albedo increases convection heat transfer and decreases radiation heat transfer at hot wall. However, the increase in scattering albedo decreases both convection and radiation heat transfer at cold wall. The increase in optical thickness decreases radiation heat transfer. The scattering anisotropy has important effects on the radiation heat transfer only. The highly forward scattering leads to an increase of radiation heat transfer whereas the highly backward scattering leads to an decrease of radiation heat transfer. The effect of scattering anisotropy decreases when reducing the wall emissivity.

Analysis of Radiative-Convective Heat Transfer about a Circular Cylinder in Crossflow Using Finite Volume Radiation Solution Method (유한체적 복사전달해석법을 이용한 주유동중에 놓인 원형실린더 주위에서의 복사-대류 열전달해석)

  • Lee, Gong-Hun;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.346-358
    • /
    • 1996
  • A finite volume radiation solution method was applied to a non- orthogonal coordinate system for the analysis of radiative-convective heat transfer about a circular cylinder in crossflow. The crossflow Reynolds number based on the cylinder radius was 20, and the fluid Prandtl number was 0.7. The radiative heat transfer coupled with convection was reasonably predicted by the finite volume radiation solution method. The investigation includes the effects of conduction- to-radiation parameter, optical thickness, scattering albedo and cylinder wall-emissivity on heat transfer about the cylinder. As the conduction- to-radiation parameter decreases, the radiative heat transfer rate increases and conduction rate as well due to the increase in temperature gradient on the cylinder wall which is caused by radiation enhancement. With an increase in the optical thickness, the Nusselt number increases significantly and the temperature gradient shows similar behavior. Though the radiative heat transfer increases with the scattering albedo, the total heat transfer decreases. This is because the decrease in the conduction heat transfer exceeds the increase in the radiation heat transfer. As the wall- emissivity increases, the radiation absorbed in the vicinity of the cylinder wall increases and thereby the total heat transfer increases, even though the conduction heat transfer decreases.

Thermal analysis inside a small chamber including radiation (미소 챔버 내 복사열전달을 수반한 열유동 해석)

  • Lee, Hyung-Sik;Do, Gi-Jung;Lee, Sang-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.194-198
    • /
    • 2006
  • In this study, numerical modeling was performed to analyze air flow including radiation heat transfer inside a small chamber. Characteristics of heat transfer between source plate and target through glass are investigated for various surface temperature of heat source plate with buoyancy effect due to gravity force. Conduction heat transfer through the glass is considered and heat source plate is assumed to be a black body. Target surface temperature is largely affected by the radiation heat transfer. It can also be seen that as the source temperature increases target surface is dominated by radiation rather than convective heat transfer by air.

  • PDF

An experimental and numerical study on natural convection-radiation conjugate heat transfer in a three-dimensional enclosure having a protruding heat source (돌출 열원을 갖는 3차원 밀폐 공간내에서의 자연대류-복사 복합 열전달에 대한 실험적 및 수치적 연구)

  • Baek, Chang-In;Lee, Gwan-Su;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3344-3354
    • /
    • 1996
  • An experimental and numerical study on the three-dimensional natural convection-radiation conjugate heat transfer in the enclosure with heat generating chip has been performed. A 3-dimensional simulation model is developed by considering heat transfer phenomena by conduction-convection and radiation. Radiative transfer was analyzed with the discrete ordinates method. Experiments are conducted in order to validate the numerical model. Comparisons with the experimental data show that good agreement is obtained when the radiation effect is considered. The effects of the thermal conductivity of the substrate and power level on heat transfer are investigated. It is shown that radiation is the dominant heat transfer mode and the conductivity of the substrate has important effects on the heat transfer in the enclosure.

Effects of radiation on wall-friction and heat-transfer in a convergent- divergent nozzle (복사가 수축 확대 노즐의 벽면에서 열전달과 벽마찰에 미치는 효과)

  • 강신형;이준식;김성훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1639-1644
    • /
    • 1990
  • Effects of radiation on the wall-friction and heat transfer in the convergent and divergent nozzle of a rocket motor are investigated in the present paper. Radiative heat transfer cools down the core gas, and the decrease in the gas temperature reduces the convective heat transfer on the wall. Radiation heat transfer is estimated by using mean-beam-length approach and core flow is assumed to be one-dimensional isentropic. The compressible thermal boundary layer is solved by a finite difference method. The Cebeci-Smith eddy viscosity model is adopted for the present study. Convective heat transfer is reduced at the throat of the nozzle and is almost compensated with an increase in radiative transfer. In the sequel total heat transfer rate is slightly reduced. However, radiation heat transfer is dominant in the converging part of the nozzle.

A Study on Radiation Heat Transfer of Wafer Transfer Module Using Computational Flow Visualization (전산유동가시화를 활용한 웨이퍼 이송장치의 복사열전달에 관한 연구)

  • Min Gi, Chu;Ji Hong, Chung;Dong Kee, Sohn;Han Seo, Ko
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.58-66
    • /
    • 2022
  • The high heat emitted from the process module and heat jacket may cause errors in semiconductor process equipment. Barriers were designed to reduce the temperature of surface on transfer module. A designed barrier was compared and analyzed by numerical analysis using ANSYS Fluent. The average temperature of barrier and effect of radiation heat transfer were also compared through absorbed radiative heat flux of the barrier. The adoption of the barrier had an effect on the radiative heat transfer reduction of the transfer module rod. The effect of the angles of barrier from 50° to 90° on the heat transfer was investigated using the absorbed radiative heat flux with the average temperature. The angle of barrier of 50° reduced the temperature up to 9.6 %.

A Basic Study on Urban Radiation Heat Transfer (도시의 방사전열에 관한 기초 연구)

  • Kim, C.M.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.4
    • /
    • pp.35-43
    • /
    • 2002
  • This research makes that quantitative radiation property of an actual town ward is obtained in quest of the parameter with regard to a radiation heat transfer property and set up several town ward models that reproduced a solid form of a city along the attribute of the city. A regular trend possibility that is able to evaluate a radiation characteristics of a town ward quantitatively from a town ward guideline and confirmation that is produced about each parameter as a result of a numerical value simulation it obtained. This research shot a coefficient of Gebhart's emission absorption. sky radiation absorption rate direct solar radiation absorption rate the parameter with regard to a radiation heat transfer characteristics of a town ward in each town ward model and a volume rate of a town ward advances case study under regular such condition and shot the absorption rate, direct and others days and calculated an absorption rate and checked about the relation between a town ward and each radiation heat transfer property of a city.

The Comparison Study of Radiative and Convective Heat Transfer in a Room Air Ventilation (환기구를 가진 실내공간에서 복사 및 대류열전달의 비교 연구)

  • 정효민;정한식;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.229-235
    • /
    • 1997
  • The comparison of radiative and convective heat transfer in a room air ventilation is investi¬gated by a numerical simulation. The room air temperature distributions with radiation are appeared more uniform than without radiation at Gr= 1460 and Re=50. The mean Nusselt number in the radiative heat transfer shows less value than convective heat transfer. The total mean Nusselt number is found Wall 1> Wall 3${\fallingdotseq}$Wall 2 7 Wall 4.

  • PDF

A Study on the Radiation Heat Transfer Effect near a Refrigerator Gasket (냉장고 가스켓 주위의 복사열전달 효과에 관한 연구)

  • Ha, Ji-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1605-1610
    • /
    • 2015
  • The present study has been accomplished to elucidate the effect of radiation heat transfer in the heat transfer analysis of refrigerator gasket, which has near 30% of refrigerator heat loss. The numerical heat transfer analysis has been conducted with the simplified modeling of refrigerator gasket. From the present CFD analysis, heat loss at the gasket is $25.6W/m^2$ for the case without radiation effect and that for the case with radiation effect is $55.0W/m^2$, which is 2.2 times greater heat loss. The radiation protection layers were installed in the gasket from 0 to 7 and the case with 7 layers has 33% reduction effect of heat loss compared with the case without any radiation protection layer. Additionally, it is better effect of radiation heat loss reduction that the radiation protection layers would be placed to the outer or inner side of gasket rather than placing to the center of gasket.