• Title/Summary/Keyword: Radiation heat

Search Result 1,420, Processing Time 0.027 seconds

The Seasonal Variation of the Heat Budget in Deukryang Bay (득량만의 열수지 계절 변동)

  • 주용환;조규대
    • Journal of Environmental Science International
    • /
    • v.7 no.1
    • /
    • pp.67-73
    • /
    • 1998
  • Surface heat budget of the Deukryang Bay from July 1, 1992 to September 12, 1993 is analyzed by us- ing the meteorological data (by Changhung Observatory and Mokpo Meteorological Station) and oceanogaphical data (by Research Center for Ocean Industrial Development. Pukyong National University). Each flux element at the sea surface which has annual variation Is derived with application of an aerodynamical bulk method and empirical formulae. The solar radiation Is the maximum In spring and sensible heat are the maximum in autumn and water. and minimum in summer The heat .storage rate is calclilated by using the rate of water temperature variation according to the depth. The oceanic transport heat is estimated as a residual. The net heat flux, the heat storage rate are positive In spring and summer, while they are negative in autumn and winter. The oceanic transport heat Is convergence In winter and divergence In the rest of seasons.

  • PDF

Specific Heat Measurement of Insulating Material using Heat Diffusion Method

  • Choi, Yeon-Suk;Kim, Dong-Lak
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.2
    • /
    • pp.32-35
    • /
    • 2012
  • The objective of the present work is to develop a precise instrument for measuring the thermal property of insulating material over a temperature range from 30 K to near room temperature by utilizing a cryocooler. The instrument consists of two thermal links, a test sample, heat sink, heat source and vacuum vessel. The cold head of the cryocooler as a heat sink is thermally anchored to the thermal link and used to bring the apparatus to a desired temperature in a vacuum chamber. An electric heater as a heat source is placed in the middle of test sample for generating uniform heat flux. The entire apparatus is covered by thermal shields and wrapped in multi-layer insulation to minimize thermal radiation in a vacuum chamber. For a supplied heat flux the temperature distribution in the insulating material is measured in steady and transient state. The thermal conductivity of insulating material is measured from temperature difference for a given heat flux. In addition, the specific heat of insulating material is obtained by solving one-dimensional heat diffusion equation.

Performance Measurement of The Hybrid Sheet with Dual Function of Electromagnetic-Shielding and Heat-Dissipating (전자파차폐 및 방열 기능을 가지는 하이브리드시트 성능측정)

  • Ahn, Sung-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.530-536
    • /
    • 2021
  • This paper presents the performance measurement results of a hybrid sheet with both shielding and heat dissipation functions developed by laminating copper mesh sheets and natural graphite sheets, which are used widely as electromagnetic shielding and heat-dissipating materials in electronic devices, without a pressure-sensitive adhesive (PSA). The results were compared by measuring the vertical and horizontal thermal conductivity with two other products to confirm the heat dissipation performance. A radiation emission test confirmed the electromagnetic shielding performance using a 3m electromagnetic anechoic chamber according to the CISPR 11 standard. In the case of vertical thermal conductivity, the proposed hybrid sheet was approximately 8.63 times higher than that of an aluminum sheet with heat dissipation coating and 18.7 times higher than that of a copper sheet laminated with artificial graphite with PSA. The proposed hybrid sheet was approximately 0.64 times that of the sheet, and approximately 1.76 times that of the heat-dissipated aluminum sheet in case of horizontal thermal conductivity. Measurements after applying each sheet in the same heat source revealed the proposed hybrid sheet to have the best heat dissipation performance. The radiation emission test showed that significantly radiation noise had been removed.

Temperature Measurement Method with Radiation Correction for Very High Temperature Gas (복사 간섭 보정을 통한 초고온 가스 온도 측정 방법)

  • Kim, Chan-Soo;Hong, Sung-Deok;Seo, Dong-Un;Kim, Yong-Wan;Lee, Won-Jae
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2059-2063
    • /
    • 2008
  • When a thermocouple is placed in a high temperature gas-flow stream, the measured temperature could be biased from the true gas temperature due to a large radiation heat loss from a thermocouple surface to its surroundings. In this study, two thermocouples of unequal diameters with 1/8 inch and 1/16 inch are used to correct the radiation effect. The method is called the reduced radiation error (RRE). The preliminary test results show that the radiation and the sheath conduction cannot be negligible for the gas temperature measurement. To minimize the sheath conduction effect, all the thermocouples will have a grounded junction and 1/8 inch thermocouple will be replaced with 1 mm thermocouples. In addition, the computational fluid dynamics code analysis shows that there is a negligible temperature difference between the positions where the thermocouples were installed.

  • PDF

Long and Short Wave Radiation and Correlation Analysis Between Downtown and Suburban Area(II) - Study on Correlation Analysis Method of Radiation Data - (도심부와 교외지역의 장·단파 복사와 상관도 분석 (II) - 관측 자료의 상관도 분석기법에 관한 연구 -)

  • Choi, Dong-Ho;Lee, Bu-Yong;Oh, Ho-Yeop
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.4
    • /
    • pp.101-110
    • /
    • 2013
  • The propose of this study is to understand the phenomenon of radiation and comparison of analysis of two methods. One is analysis method of same-time data and the another is analysis method of rank data. We confirmed that two methods of correlation analysis had the effectiveness and suitability. The followings are main results from this study. 1) The seasonal correlation coefficient of long and short-wave radiation is higher in winter than in summer because of high humidity in the summer season can makes easily cloud in the sky locally. 2) According to analysis method, there is big difference in correlation coefficient from 0.494(Analysis method of same-time data) to 0.967(Analysis method of rank data) with short-wave radiation by the location during summer. These results have significant value in solar radiation research and analysis. It has explored a new way for solar radiation research of analysis method as well.

Effects of heat and gamma radiation on the degradation behaviour of fluoroelastomer in a simulated severe accident environment

  • Inyoung Song ;Taehyun Lee ;Kyungha Ryu ;Yong Jin Kim ;Myung Sung Kim ;Jong Won Park;Ji Hyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4514-4521
    • /
    • 2022
  • In this study, the effects of heat and radiation on the degradation behaviour of fluoroelastomer under simulated normal operation and a severe accident environment were investigated using sequential testing of gamma irradiation and thermal degradation. Tensile properties and Shore A hardness were measured, and thermogravimetric analysis was used to evaluate the degradation behaviour of fluoroelastomer. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize the structural changes of the fluoroelastomer. Heat and radiation generated in nuclear power plant break and deform the chemical bonds, and fluoroelastomer exposed to these environments have decreased C-H and functional groups that contain oxygen and double bonds such as C-O, C=O and C=C were generated. These functional groups were formed by auto oxidation by reacting free radicals generated from the cleaved bond with oxygen in the atmosphere. In this auto oxidation reaction, crosslinks were generated where bonded to each other, and the mobility of molecules was decreased, and as a result, the fluoroelastomer was hardened. This hardening behaviour occurred more significantly in the severe accident environment than in the normal operation condition, and it was found that thermal stability decreased with the generation of unstable structures by crosslinking.

Analysis of Conceptions of Heat and Temperature of the Pre-service Elementary School Teachers (예비 초등교사들의 열과 온도에 대한 개념 분석)

  • 고한중;백성혜
    • Journal of Korean Elementary Science Education
    • /
    • v.21 no.1
    • /
    • pp.81-100
    • /
    • 2002
  • This study identified concepts of heat and temperature. The study was conducted by 200 pre-service elementary school teachers at J-university. The questionnaire consisted of 11 multiple choice questions regarding equilibrium of heat, amount of heat, conduction, and radiation. The questions were designed to provide reasons based on answers. The results showed a misconception about the direction of heat transfer. A large percentage of individuals surveyed believed temperature was a measure of heat and also thought heat to be an element. They were not able to distinguish between conceptions of heat and conceptions of temperature.

  • PDF

Experimental of the Rotaing Cryogenic System (회전하는 극저온 시스템의 단열 특성에 관한 실험적 연구)

  • 이창규;정상권
    • Progress in Superconductivity and Cryogenics
    • /
    • v.2 no.1
    • /
    • pp.7-13
    • /
    • 2000
  • A rotating cryogenic system was designed similar to the cooling system for the rotor of a superconducting generator. The experimental rotor has an inner vessel which simulates the winding space of an actual superconducting rotor, and a torque tube of comparable design. This paper describes the evaluation of the total heat leak into the inner vessel that leads to the study of the heat transfer characteristic of the rotating cryogenic system. To examine the insulation performance of the experimental rotor. temperature was measured at each part of the system at various rotaing speeds from 0 rpm to 600 rpm. Total heat leak into the inner vessel was calculated by measuring the boil-off rate of liquid helium. Conduction heat leak to the inner vessel was obtained by the vent tube, and radiation heat leak was calculated by subtracting the conduction heat lent from the total heat leak. There seemed to be no rotaional dependency of total heat leak at least up 600 rpm.

  • PDF

Estimation of Daytime Sensible Heat Flux using Routine Meteorological Data (정규기상관측자료를 이용한 주간의 현열 플럭스 추정)

  • 이종범;김용국;박철용
    • Journal of Environmental Science International
    • /
    • v.9 no.2
    • /
    • pp.109-114
    • /
    • 2000
  • The purpose of the present study is to develope the estimation scheme for sensible heat flux by semi-empirical approach using routine meteorological data such as solar radiation and air temperature. To compare observed sensible heat flux with estimated sensible heat flux, the sensible heat fluxes were measured by three dimensional sonic anemometer-thermometer. The field observation was performed during 1 year from December 1, 1995 to November 30, 1996 on a rice paddy field in Chunchon basin. The heat fluxes were measured at a heights of 5m and mean meteorological variables were obtained at two levels, 2.5m(or 1.5m) and 10m. Since condition of rice paddy field such as, wetness of the field, roughness length, vary widely, we devided annual data to 5 periods. Comparing with two sensible heat fluxes, the results showed that the correlation coefficients were more than 0.86. Thus, we can conclude that the estimation method of sensible heat fluxes using routine meteorological data is practical and reliable enough.

  • PDF

Measurement of The Thermal Transfer Coefficient Predicting Efficiency of The Heat Pipe (히트파이프 성능예측 열전달계수 측정)

  • Lim, Soo-Jung;Moon, Jong-Min;Rhee, Gwang-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2039-2042
    • /
    • 2008
  • Recently, Electronic & Electrical Products have problems how to reduce heat in trend reducing size and increasing speed. heat pipes worked by latent heats can solve problems for effective and quiet electronic applications. Heat Pipes have to be suitably designed for the external conditions due to showing optimum performance. it has influence on efficiency of heat pipes to the exterior structure changed by length, bending angle, diameter. Designing heat pipes has depended on experience from trial and error. this method wasted too many resources, but can't guarantee efficiency. to prevent those wastes, this study aims at making the thermal transfer coefficient predicting efficiency. In this study, the thermal transfer coefficient has been made from experimental results that used variables - lengths between heat source and radiation, bending angles, diameters of heat pipes. variables become non-dimensional in modeling process for making the coefficient.

  • PDF