• Title/Summary/Keyword: Radiation Field

Search Result 2,262, Processing Time 0.03 seconds

Polygonal Model Analysis on Occupational Exposure Record of Radiation Workers by Work Field (업종별 방사선작업종사자 피폭 기록 다각형 모델 분석 연구)

  • Je-Wan Park;Ji-Young Han;Yong-Min Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.2
    • /
    • pp.277-284
    • /
    • 2023
  • Since the radiological risk is different depending on the working environment, protection measures and policies must be developed through analysis of the field area environment. Evaluating the characteristics of the field area that uses radiation should be conducted through comparative analysis with other industries, not just the numerical value of the field area. In this study, evaluation factors were derived from exposure records by the department to compare radiation occupational exposure records by sector. And then, we developed a polygonal model for comparative analysis and applied them to eight work fields through ten evaluation factors. Based on the occupational exposure record in 2020, a polygonal model was applied to compare and evaluate the characteristics of the radiation work area. Through this, the usefulness of the polygonal model was confirmed, and protection policy measures for the industry were proposed.

Field tests of the radiation detectors for environmental radiation monitoring around KORI nuclear power plants (고리원자력 주변 환경방사선 감시를 위한 방사선 측정기의 현장 성능 시험)

  • 최성수;신대용;조규성;하달규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1371-1374
    • /
    • 1997
  • We had developed the on-line environmental monitoring system which has installed around Kori Nuclear Power Plants and will be taken the place of the existing system. The system consists of a main computer and 11 sets of radiation monitoring post equipments. Nal(Tl) scintillation detectro was adopted in addition to ion-chamber detector and implemented with DCU(Dose Conversion Unit) and SCA(Single Channel Analyzer). Compared with the existing system, it has revised feature in the radiation measurements which are detection of artificial radioactivity and 2-ways of the radiatiion detectors. The field test trsults show that the developed radiation detecting equipments can measure environmental radiation withn 5.0% of the theoretical value.

  • PDF

Computed Tomographic Simulation of Craniospinal Irradiation (전산화 단층 촬영 장치를 이용한 뇌척수 조사의 치료 계획)

  • Lee CI;Kim HN;Oh TY;Hwang DS;Park NS;Kye CS;Kim YS
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.11 no.1
    • /
    • pp.53-59
    • /
    • 1999
  • The aim of this study is to improve the accuracy of field placement and junction between adjacent fields and block shielding through the use of a computed tomography(CT) simulator and virtual simulation. The information was acquired by assessment of Alderson Rando phantom image using CT simulator (I.Q. Xtra - Picker), determination of each field by virtual fluoroscopy of voxel IQ workstation AcQsim and colored critical structures that were obtained by contouring in virtual simulation. And also using a coronal, sagittal and axial view can determine the field and adjacent field gap correctly without calculation during the procedure. With the treatment planning by using the Helax TMS 4.0, the dose in the junction among the adjacent fields and the spinal cord and cribriform plate of the critical structure was evaluated by the dose volume histogram. The pilot image of coronal and sagittal view took about 2minutes and 26minutes to get 100 images. Image translation to the virtual simulation workstation took about 6minutes. Contouring a critical structure such as cribriform plate, spinal cord using a virtual fluoroscopy were eligible to determine a correct field and shielding. The process took about 20 minutes. As the result of the Helax planning, the dose distribution in adjacent field junction was ideal, and the dose level shows almost 100 percentage in the dose volume histogram of the spinal cord and cribriform plate CT simulation can get a correct therapy area due to enhancement of critical structures such as spinal cord and cribriform plate. In addition, using a Spiral CT scanner can be saved a lot of time to plan a simulation therefore this function can reduce difficulties to keep the patient position without any movements to the patient, physician and radiotherapy technician.

  • PDF

Effect of Low Magnetic Field on Dose Distribution in the SABR Plans for Liver Cancer

  • Son, Jaeman;Chun, Minsoo;An, Hyun Joon;Kang, Seong-Hee;Chie, Eui Kyu;Yoon, Jeongmin;Choi, Chang Heon;Park, Jong Min;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.29 no.2
    • /
    • pp.47-52
    • /
    • 2018
  • To investigate the effect of low magnetic field on dose distribution in SABR plans for liver cancer, we calculated and evaluated the dose distribution to each organ with and without magnetic fields. Ten patients received a 50 Gy dose in five fractions using the $ViewRay^{(R)}$ treatment planning system. For planning target volume (PTV), the results were analyzed in the point minimum ($D_{min}$), maximum ($D_{max}$), mean dose ($D_{mean}$) and volume receiving at least 90% ($V_{90%}$), 95% ($V_{95%}$), and 100% ($V_{100%}$) of the prescription dose, respectively. For organs at risk (OARs), the duodenum and stomach were analyzed with $D_{0.5cc}$ and $D_{2cc}$, and the remained liver except for PTV was analyzed with $D_{mean}$, $D_{max}$, and $D_{min}$. Both inner and outer shells were analyzed with the point $D_{min}$, $D_{max}$, and $D_{mean}$, respectively. For PTV, the maximum change in volume due to the presence or absence of the low magnetic field showed a percentage difference of up to $0.67{\pm}0.60%$. In OAR analysis, there is no significant difference for the magnetic field. In both shell structure analyses, although there are no major changes in dose distribution, the largest value of deviation for $D_{max}$ in the outer shell is $2.12{\pm}2.67Gy$. The effect of low magnetic field on dose distribution by a Co-60 beam was not significantly observed within the body, but the dose deposition was only appreciable outside the body.

Dosimetric Effects of Intrafractional Organ Motion in Field-in-Field Technique for Whole-Breast Irradiation

  • Hong, Chae-Seon;Ju, Sang Gyu;Choi, Doo Ho;Han, Youngyih;Huh, Seung Jae;Park, Won;Ahn, Yong Chan;Kim, Jin Sung;Lim, Do Hoon
    • Progress in Medical Physics
    • /
    • v.30 no.3
    • /
    • pp.65-73
    • /
    • 2019
  • Purpose: We evaluated the motion-induced dosimetric effects on the field-in-field (FIF) technique for whole-breast irradiation (WBI) using actual patient organ motion data obtained from cine electronic portal imaging device (cine EPID) images during treatment. Materials and Methods: Ten breast cancer patients who received WBI after breast-conserving surgery were selected. The static FIF (SFIF) plan involved the application of two parallel opposing tangential and boost FIFs. To obtain the amplitude of the internal organ motion during treatment, cine EPID images were acquired five times for each patient. The outside contour of the breast (OCB) and chest wall (CW) contour were tracked using in-house motion analysis software. Intrafractional organ motion was analyzed. The dynamic FIF (DFIF) reflecting intrafractional organ motion incorporated into the SFIF plan was calculated and compared with the SFIF in terms of the dose homogeneity index (DHI90/10) for the target and V20 for the ipsilateral lung. Results: The average motion amplitudes along the X and Y directions were 1.84±1.09 mm and 0.69±0.50 mm for OCB and 1.88±1.07 mm and 1.66±1.49 mm for CW, respectively. The maximum motion amplitudes along the X and Y directions were 5.53 and 2.08 mm for OCB and 5.22 and 6.79 mm for CW, respectively. Significant differences in DHI90/10 values were observed between SFIF and DFIF (0.94 vs 0.95, P<0.05) in statistical analysis. The average V20 for the lung in the DFIF was slightly higher than that of the SFIF in statistical analysis (19.21 vs 19.00, P<0.05). Conclusion: Our findings indicate that the FIF technique can form a safe and effective treatment method for WBI. Regular monitoring using cine EPID images can be effective in reducing motion-induced dosimetric errors.

Transmission Dose Estimation Algorithm for Irregularly Shaped Radiation Field (부정형 방사선 조사면에 대한 투과선량 보정 알고리즘)

  • Yun Hyong Geun;Chie Eui Kyu;Huh Soon Nyung;Wu Hong Gyun;Lee Hyoung Koo;Shin Kyo Chul;Kim Siyong;Ha Sung Whan
    • Radiation Oncology Journal
    • /
    • v.20 no.3
    • /
    • pp.274-282
    • /
    • 2002
  • Purpose : Measurement of transmission dose is useful for in vivo dosimetry. In this study, the algorithm for estimating the transmission dose for open radiation fields was modified for application to partially blocked radiation fields. Materials and Methods : The beam data was measured with a flat solid phantom with various blocked fields. A new correction algorithm for partially blocked radiation field was developed from the measured data. This algorithm was tested in some settings simulating clinical treatment with an irregular field shape. Results : The correction algorithm for the beam block could accurately reflect the effect of the beam block, with an error within ${\pm}1.0\%$, with both square fields and irregularly shaped fields. Conclusion : This algorithm can accurately estimate the transmission dose in most radiation treatment settings, including irregularly shaped field.

Preliminary Study of Neuronal Response to Dose Distribution of Radiation with MR Spectroscopy

  • Ahn, Seung-Do;Yi, Byoung-Young;Lee, Jung-Hee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2002.06b
    • /
    • pp.25-26
    • /
    • 2002
  • The goal of radiation therapy is to maximize the tumor dose and to minimize the dose of normal tissue. In order to achieve this goal, the new radiation therapy techniques such as three dimensional conformal therapy or intensity modulated radiation therapy has been developed and tried to clinical application. The relationship between radiation dose and normal tissue response is an interesting subject in the radiation therapy field.(omitted)

  • PDF

Effect of electric field on primary dark pulses in SPADs for advanced radiation detection applications

  • Lim, Kyung Taek;Kim, Hyoungtaek;Kim, Jinhwan;Cho, Gyuseong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.618-625
    • /
    • 2021
  • In this paper, the single-photon avalanche diodes (SPADs) featuring three different p-well implantation doses (∅p-well) of 5.0 × 1012, 4.0 × 1012, and 3.0 × 1012 atoms/cm2 under the identical device layouts were fabricated and characterized to evaluate the effects of field enhanced mechanisms on primary dark pulses due to the maximum electric field. From the I-V curves, the breakdown voltages were found as 23.2 V, 40.5 V, and 63.1 V with decreasing ∅p-well, respectively. By measuring DCRs as a function of temperature, we found a reduction of approximately 8% in the maximum electric field lead to a nearly 72% decrease in the DCR at Vex = 5 V and T = 25 ℃. Also, the activation energy increased from 0.43 eV to 0.50 eV, as decreasing the maximum electric field. Finally, we discuss the importance of electric field engineering in reducing the field-enhanced mechanisms contributing to the DCR in SPADs and the benefits on the SPADs related to different types of radiation detection applications.

A Study on Radiation Risk Recognition Aided System Visualizing Risk Information by CG

  • Katagiri, M.;Tuzuki, Y.;Sawamura, S.;Aoki, Y.
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.425-428
    • /
    • 2002
  • The technology of Computer Graphics (CG) has been in great progress for almost 20 years and has proven to be a valuable tool for a broad variety of fields, including nuclear engineering. To work in any hazardous environment for example radiation field is particularly challenging because the danger is not always visually apparent. In this study as the application of CG to nuclear engineering field, we proposed to develop a radiation risk recognition aided system in which various radiation information; radiation risks, radiation distribution, hazard information and so on, were visualized by CG. The system used the server and client system. In the server there were two parts; one (main-server) was the database part having various data and the other (sub-server) was the visualization part visualizing the human phantom by POV-Ray. In the client there was the input and output part. The outputs from the system were various radiation information represented by coloring, circle graph and line graph intuitionally. The system is useful for a broad range of activities including radiation protection, radiation management, dose minimization, and demonstration to the public.

  • PDF

Effects of Surface Radiation on the Unsteady Natural Convection in a Rectangular Enclosure

  • Baek, Seung-Wook;Kim, Taig-Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.95-104
    • /
    • 2002
  • Numerical solution of the full Navier-Stokes equation as well as the energy equation has been obtained for the unsteady natural convection in a rectangular enclosure. One side wall was maintained at very high temperature simulating fires. Especially the effect of surface radiation was taken into account. While the enclosed air was assumed to be transparent, the internal walls directly interacted one another through the surface radiation. Due to a significant temperature difference in the flow field, the equation of state was used instead of the Boussinesq approximation. It was found that the rapid heating of the adiabatic ceiling and floor by the incoming radiation from the hot wall made the evolution at thermo-fluid field highly unstable in the initial period. Therefore, the secondary cells brought about at the floor region greatly affected the heat transfer mechanism inside the enclosure. The heat transfer rate was augmented by the radiation, resulting in requiring less time for the flow to reach the steady state. At the steady state neglecting radiation two internal hydraulic jumps were clearly observed in upper/left as well as in lower/right comer. However, the hydraulic jump in the lower/right comer could not be observed for the case including radiation due to its high momentum flow over the bottom wall. Radiation resulted in a faster establishment of the steady state phenomena.