Transmission Dose Estimation Algorithm for Irregularly Shaped Radiation Field

부정형 방사선 조사면에 대한 투과선량 보정 알고리즘

  • Yun Hyong Geun (Department of Therapeutic Radiology, Dankook University College of Medicine) ;
  • Chie Eui Kyu (Department of Therapeutic Radiology, Seoul National University College of Medicine) ;
  • Huh Soon Nyung (Department of Therapeutic Radiology, Seoul National University College of Medicine, Torsion Meditronics) ;
  • Wu Hong Gyun (Department of Therapeutic Radiology, Seoul National University College of Medicine, Institute of Radiation Medicine, Medical Research Center, Seoul National University) ;
  • Lee Hyoung Koo (Department of Biomedical Engineering, The Catholic University) ;
  • Shin Kyo Chul (Department of Therapeutic Radiology, Dankook University College of Medicine) ;
  • Kim Siyong (Department of Therapeutic Radiology, Florida University College of Medicine) ;
  • Ha Sung Whan (Department of Therapeutic Radiology, Seoul National University College of Medicine, Institute of Radiation Medicine, Medical Research Center, Seoul National University)
  • 윤형근 (단국대학교 의과대학 치료방사선과학교실) ;
  • 지의규 (서울대학교 의과대학 치료방사선과학교실) ;
  • 허순녕 (서울대학교 의과대학 치료방사선과학교실) ;
  • 우홍균 (서울대학교 의과대학 치료방사선과학교실, 서울대학교 의학연구원 방사선의학연구소) ;
  • 이형구 (가톨릭대학교 의과대학 생체의공학교실) ;
  • 신교철 (단국대학교 의과대학 치료방사선과학교실) ;
  • 김시용 (Florida 대학 방사선종양학과) ;
  • 하성환 (서울대학교 의과대학 치료방사선과학교실, 서울대학교 의학연구원 방사선의학연구소)
  • Published : 2002.09.01

Abstract

Purpose : Measurement of transmission dose is useful for in vivo dosimetry. In this study, the algorithm for estimating the transmission dose for open radiation fields was modified for application to partially blocked radiation fields. Materials and Methods : The beam data was measured with a flat solid phantom with various blocked fields. A new correction algorithm for partially blocked radiation field was developed from the measured data. This algorithm was tested in some settings simulating clinical treatment with an irregular field shape. Results : The correction algorithm for the beam block could accurately reflect the effect of the beam block, with an error within ${\pm}1.0\%$, with both square fields and irregularly shaped fields. Conclusion : This algorithm can accurately estimate the transmission dose in most radiation treatment settings, including irregularly shaped field.

목적 : 방사선치료시 환자에 조사되는 방사선량을 매 치료시마다 간편하게 확인하기 위한 생체내(in vivo) 선량측정의 한 방법으로 투과선량을 이용하는 새로운 시스템에 필요한 알고리즘을 이미 개발한 바 있다. 본 연구에서는 조사면 일부가 차폐된 부정형 조사면에서 적용하기 위한 보정 알고리즘을 개발하고자 하였다. 재료 및 방법 : 알고리즘을 개발하기 위한 기본 자료를 마련하기 위하여 투과선량 측정을 시행하였다. 측정에는 선형가속기의 6 MV 및 10 MV의 X선을 이용하였고, 이온함형 측정기 및 전위계를 사용하였다. 측정조건으로는 조사면의 크기(collimator opening)는 $2\times2\;cm^2$에서 $32\times32\;cm^2$까지 한 변을 2 cm씩 증가시켜 16단계로 하였고, 팬톰 두께(phantom thickness; Tp)는 0, 10, 20 및 30 cm, 팬톰과 측정기간의 거리(phantom chamber distance; PCD)는 10, 30 및 50 cm으로 하였다. 이 때 조사면의 일부를 차폐하였으며 차폐되지 않은 유효조사면(effective field size)의 크기를 $5\times5,\;10\times10,\;15\times15$$20\times20\;cm^2$으로 하였다. 결과 : 조사면의 일부가 차폐체에 의하여 차폐된 경우 종양선량이 감소되며 동시에 투과선량도 감소된다는 물리학적인 추론을 이용하여 방사선조사면 일부 차폐가 투과선량에 미치는 영향을 보정하기 위한 알고리즘을 개발하였으며 조사면 일부가 차폐된 여러 측정 조건에서 알고리즘을 이용한 계산치와 실제측정치 간의 오차는 ${\pm}1.0\%$ 이내이었다. 결론 : 투과선량 계산 알고리즘은 조사면 일부가 차폐된 불규칙 조사면의 경우 ${\pm}1.0\%$ 이하의 오차 범위로 정확히 투과선량을 계산할 수 있음을 확인하였다.

Keywords

References

  1. Wu HG, Ha SW. Development of algorithm for on-Iine dosimetry system for high energy radiation treatment. J Korean Asso Radiat Prot 1997;22:207-218
  2. Yun HG, Huh SN, Lee HK, Wu HG, Shin KC, Ha SW. Transmission dose estimation algorithm for in vivo dosimetry for open radiation field. J Korean Asso Radiat Prot (sub-mitted for pubIication)
  3. Wu HG, Shin KC, Ha SW, Huh SN, Lee HK. Inhomogeneity correction in on-line dosimetry using transmission dose. J korean Asso Radiat Prot 1998;23:139-147
  4. Kim MS, Yoo SY, Cho CK, et aI. The structure of radiation oncology in 1997. J Korean Soc Ther Radiol Oncol 1999;17:172-178
  5. Urie MM, Goiten M, Loppke K, et aI. The role of uncertainty analysis in treatment plannning. Int J Radiat Oncol Biol Phys 1991;21:91-107
  6. MiIIwater CJ, MacLeod AS, Thwaites DI. In vivo semiconductor dosimetry as part of routine quaIity assurance. Br J Radiol 1998;71:661-668
  7. Adeyemi A, Lord J. An audit of radiotherapy patient doses measured with in vivo semiconductor detectors. Br J RadioI 1997;70:399-408
  8. Essers M, Mijnheer BJ. In vivo dosimetry during external photon beam radiotherapy. Int J Radiat Oncol Biol Phys 1999;43:245-259 https://doi.org/10.1016/S0360-3016(98)00341-1
  9. CaIandrino R, Cattaneo GM, Fiorino C, et aI. Detection of systematic errors in external radiotherapy before treatment delivery. Radiother Oncol 1997;45:271-274 https://doi.org/10.1016/S0167-8140(97)00095-9
  10. NoeI A, AIetti P, Bey P, et aI. Detection of errors in individual patients in radiotherapy by systematic in vivo dosimetry. Radiother Oncol 1995;34:144-151 https://doi.org/10.1016/0167-8140(94)01503-U
  11. Miszczyk L, Wydmanski J. Evaluation of delivered dose changes during radiation therapy. Acta Oncol 1999;38:197-201 https://doi.org/10.1080/028418699431618
  12. Voordeckers M, Goossens H, Rutten J, et aI. The implementation of in vivo dosimetry in a small radiotherapy department. Radiother Oncol 1998;47:45-48 https://doi.org/10.1016/S0167-8140(97)00177-1
  13. Tienhoven G, Mijnheer BJ, BarteIink H, et aI. Quality assurance of the EORTC Trial 22881/10882 : boost versus noboost in breast conserving therapy. An overview. Strahlenther Onkol 1997;173:201-207
  14. Cozzi L, FogIiata-Cozzi A. Quality assurance in radiation oncology. A study of feasibility and impact on action Ievels of an in vivo dosimetry program during breast cancer irradiation. Radiother Oncol 1998;47:29-36
  15. BoeIIaard R, van Herk M, Mijnheer BJ. A convolution model to convert transmission dose images to exit dose distribution. Med Phys 1997;24:189-199 https://doi.org/10.1118/1.598066
  16. Essers EM, BoeIIaard R, van Herk M, Lanson H, Mijnheer BJ. Transmission dosimetry with a Iiquid-filled eIectronic portsI imaging deviceA convolution model to convert transmission dose images to exit dose distribution. Int J Radiat Oncol Biol Phys 1996;34:931-941 https://doi.org/10.1016/0360-3016(95)02191-4