• Title/Summary/Keyword: Radiation Detector

Search Result 868, Processing Time 0.022 seconds

An Experimental Study on the Thermal Load of a Cryochamber with Radiation Shields (복사 차폐막이 설치된 극저온 용기의 열부하 특성에 관한 실험적 연구)

  • Kim, Young-Min;Kang, Byung-Ha;Park, Seong-Je
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.1
    • /
    • pp.11-16
    • /
    • 2008
  • Infrared (IR) detectors are widely used for such applications as thermoelastic stress analysis, medical diagnostics and temperature measurement. Infrared detectors commonly need to be refrigerated below 80 K, and thus a cooling system should be equipped together with the detector system. The cooling load, which should be removed by the cooling system to maintain the nominal operating temperature of the detector, critically depends on the insulation efficiency of the cryochamber housing the detector. Thermal load of a cryochamber is attributed to the conduction heat transfer through a cold finger, the gases conduction and radiation heat transfer. The thermal loads of an infrared detector cryochamber with a radiation shield are investigated experimentally in present study. Since the effect of radiation heat transfer on thermal loads is significant, radiation shields is installed in the cold finger part to protect heat input through radiation.

The Development of UV-IR Combination Flame Detector (UV-IR 복합형 화재감지장치 개발)

  • 이복영;권오승;정창기;박상태
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • All objects emit thermal radiation and this radiation is the basis of the techniques used to detect flames. The usual phenomena occurring in the initial stage of the fire are generally invisible products of a combustion and visible smoke. Liquid or gaseous materials do not undergo a smoldering stage so that fires develop very rapidly. Also, the heat generated by the initial flames is usually not sufficient to activate a heat detector. In this case the most effective criterion for automatic fire detection is the flame. According to the fire regulation of korea, the compulsory standard provided that a flame detector shall be installed in a place that the attachment height of detector is higher than 20 m, chemical plants, hangar, refinery, etc.. The results of the research and development are discriminated between a flame and other radiant emitters, developed a UV detector tube contains an inert gas which absorbs UV radiation, developed PZT pyroelectric element is based on the use of photovoltanic cell, developed IR band-pass filter that only allow a 4.3 $\mu\textrm{m}$ radiation wavelength to reach the sensors and developed UV-IR combination flame detector combined into a single detection device.

  • PDF

Advances in gamma radiation detection systems for emergency radiation monitoring

  • Kumar, K.A. Pradeep;Sundaram, G.A. Shanmugha;Sharma, B.K.;Venkatesh, S.;Thiruvengadathan, R.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2151-2161
    • /
    • 2020
  • The study presents a review of research advancements in the field of gamma radiation detection systems for emergency radiation monitoring, particularly two major sub-systems namely (i) the radiation detector and (ii) the detection platform - air-borne and ground-based. The dynamics and functional characteristics of modern radiation detector active materials are summarized and discussed. The capabilities of both ground-based and aerial vehicle platforms employed in gamma radiation monitoring are deliberated in depth.

Characteristics of Radiation-Resistant Real-Time Neutron Monitor for Accelerator-Based BNCT

  • Nakamura, Takemi;Sakasai, Kaoru;Nakashima, Hiroshi;Takamiya, Koichi;Kumada, Hiroaki
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.105-109
    • /
    • 2016
  • Background: For an accelerator-based BNCT, we have fabricated a new detector consisting of quartz optical fibers that have excellent radiation-resistant characteristics. Materials and Methods: The developed detectors were irradiated at Kyoto University Research Reactor. Results and Discussion: The experimental results showed that the new detector had good output linearity for the neutron intensity, and the response of the new detector did not decrease during the irradiation. Conclusion: The new detector consisting of quartz optical fibers can be applied to measurement of neutron field of an accelerator-based BNCT.

The Analysis of the Collimator & Radiation Shield for the Radiation Sensor for the 3Dimension Radiation Detection (3차원 방사선 탐지장치용 검출센서의 차폐체 및 Collimator 구조 분석 연구)

  • Hwang, Young-Gwan;Lee, Nam-Ho;Park, Sumg-Hun;Jeong, Sang-Hun;Kim, Jong-Ryul;Choi, Myung-Jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.707-709
    • /
    • 2014
  • The radiation sources leaked from large-scale radiation leak accident like the Fukushima nuclear power plant accident or nuclear explosions can cause to the very large damage for us. So that the damage can be minimized, we have being developed a detector that can providing information about the location of the source to remove dangerous substances quickly than the conventional single detector. In this paper, we designed and implemented the radiation shield and the collimator for the development of the stereo radiation detector to detect contamination things using MCNP Simulation. And we analysed the test results of the radiation shield and collimator using the radiation source. The results of this paper will be used as the basis for improving the efficiency of the stereo radiation detector being studied currently.

  • PDF

Fabrication and Evaluation of Spectroscopic Grade Quasi-hemispherical CdZnTe Detector

  • Beomjun Park;Kyungeun Jung;Changsoo Kim
    • Journal of Radiation Protection and Research
    • /
    • v.49 no.2
    • /
    • pp.85-90
    • /
    • 2024
  • Background: This study focuses on the fabrication and characterization of quasi-hemispherical Cd0.9Zn0.1Te (CZT) detector for gamma-ray spectroscopy applications, aiming to contribute to advancements in radiation measurement and research. Materials and Methods: A CZT ingot was grown using the vertical Bridgman technique, followed by proper fabrication processes including wafering, polishing, chemical etching, electrode deposition, and passivation. Response properties were evaluated under various external bias voltages using gamma-ray sources such as Co-57, Ba-133, and Cs-137. Results and Discussion: The fabricated quasi-hemispherical CZT detector demonstrated sufficient response properties across a wide range of gamma-ray energies, with sufficient energy resolution and peak distinguishability. Higher external bias voltages led to improved performance in terms of energy resolution and peak shape. However, further improvements in defect properties are necessary to enhance detector performance under low bias conditions. Conclusion: This study underscores the efficacy of quasi-hemispherical CZT detector for gamma-ray spectroscopy, providing valuable insights for enhancing their capabilities in radiation research field.

A detector system for searching lost γ-ray source

  • Khan, Waseem;He, Chaohui;Cao, Yu;Khan, Rashid;Yang, Weitao
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1524-1531
    • /
    • 2020
  • The aim of this work is to develop a Geiger-Muller (GM) detector system for robot to look for a radioactive source in case of a nuclear emergency or in a high radiation environment. In order to find a radiation source easily, a detector system, including 3 detectors, was designed to search γ-ray radiation sources autonomously. First, based on GEANT4 simulation, radiation dose rates in 3 Geiger-Muller (GM) counters were simulated at different source-detector distances, distances between detectors and angles. Various sensitivity analyses were performed experimentally to verify the simulated designed detector system. A mono-energetic 137Cs γ-ray source with energy 662 keV and activity of 1.11 GBq was used for the observation. The simulated results were compared with the experimental dose rate values and good agreements were obtained for various cases. Only based on the dose rates in three detectors, the radiation source with a specific source activity and angle was localized in the different location. A method was adopted with the measured dose rates and differences of distances to find the actual location of the lost γ-ray source. The corresponding angles of deviation and detection limits were calculated to determine the sensitivity and abilities of our designed detector system. The proposed system can be used to locate radiation sources in low and high radiation environments.

Determination of Spectrum-Exposure Rate Conversion Factor for a Portable High Purity Germanium Detector (휴대형 고순도 게르마늄검출기에 대한 스펙트럼-조사선량율 변환연산자의 결정)

  • Kwak, Sang-Soo;Park, Chong-Mook;Ro, Seung-Gy
    • Journal of Radiation Protection and Research
    • /
    • v.13 no.2
    • /
    • pp.29-40
    • /
    • 1988
  • A spectrum-exposure rate conversion operator G(E) for a portable HPGe detector used for field environmental radiation survey was theoretically developed on the basis of a space distribution function of gamma flux emitted from a disk source and an areal efficiency of the detector. The radiation exposure rates measured using this G(E) and the portable HPGe. detector connected to a portable multichannel analyzer were compared with those measured by a 3' ${\phi}\;{\times}$3' NaI(Tl) scintillation detector with the reported G(E) and a pressurized ionization chamber. A comparison of the three results showed that the result obtained using the HPGe detector was lower than those determined using the NaI(Tl) detector and ionization chamber by 17% to 29%, The difference obtained is close to that reported in literature. The method developed here can be easily applicable to obtain a G(E) factor suitable to any detector for detecting the exposure rate of environmental gamma radiation, since the spectrum-exposure rate conversion operator can be calculated by a hand calculator.

  • PDF

Feasibility study of SiPM based scintillation detector for dual-energy X-ray absorptiometry

  • Park, Chanwoo;Song, Hankyeol;Joung, Jinhun;Kim, Yongkwon;Kim, Kyu Bom;Chung, Yong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2346-2352
    • /
    • 2020
  • Dual-energy x-ray absorptiometry (DXA) is the noninvasive method to diagnose osteoporosis disease characterized by low bone mass and deterioration of bone tissue. Many global companies and research groups have developed the various DXA detectors using a direct photon-counting detector such as a cadmium zinc telluride (CZT) sensor. However, this approach using CZT sensor has some drawback such as the limitation of scalability by high cost and the loss of efficiency due to the requirement of a thin detector. In this study, a SiPM based DXA system was developed and its performance evaluated experimentally. The DXA detector was composed of a SiPM sensor coupled with a single LYSO scintillation crystal (3 × 3 × 2 ㎣). The prototype DXA detector was mounted on the dedicated front-end circuit consisting of a voltage-sensitive preamplifier, pulse shaping amplifier and constant fraction discriminator (CFD) circuit. The SiPM based DXA detector showed the 34% (at 59 keV) energy resolution with good BMD accuracy. The proposed SiPM based DXA detector showed the performance comparable to the conventional DXA detector based on CZT.