DOI QR코드

DOI QR Code

Advances in gamma radiation detection systems for emergency radiation monitoring

  • Kumar, K.A. Pradeep (SIERS Research Laboratory, Department of Electronics and Communication Engineering, Amrita School of Engineering) ;
  • Sundaram, G.A. Shanmugha (SIERS Research Laboratory, Department of Electronics and Communication Engineering, Amrita School of Engineering) ;
  • Sharma, B.K. (Department of Sciences, Amrita School of Engineering) ;
  • Venkatesh, S. (Aparajitha Group) ;
  • Thiruvengadathan, R. (SIERS Research Laboratory, Department of Electronics and Communication Engineering, Amrita School of Engineering)
  • Received : 2019.05.28
  • Accepted : 2020.03.11
  • Published : 2020.10.25

Abstract

The study presents a review of research advancements in the field of gamma radiation detection systems for emergency radiation monitoring, particularly two major sub-systems namely (i) the radiation detector and (ii) the detection platform - air-borne and ground-based. The dynamics and functional characteristics of modern radiation detector active materials are summarized and discussed. The capabilities of both ground-based and aerial vehicle platforms employed in gamma radiation monitoring are deliberated in depth.

Keywords

References

  1. F. El Ghissassi, R. Baan, K. Straif, Y. Grosse, B. Secretan, V. Bouvard, L. Benbrahim-Tallaa, N. Guha, C. Freeman, L. Galichet, others, A review of human carcinogens - part D: radiation, Lancet Oncol. 10 (2009) 751-752. https://doi.org/10.1016/S1470-2045(09)70213-X
  2. I.A.E. Association, Others, Power Reactor Information System, 2015. Japan (Accessed January 2015).
  3. B.K. Sovacool, A critical evaluation of nuclear power and renewable electricity in Asia, J. Contemp. Asia 40 (2010) 369-400. https://doi.org/10.1080/00472331003798350
  4. D.C.W. Sanderson, J.M. Ferguson, The European capability for environmental airborne gamma ray spectrometry, Radiat. Protect. Dosim. 73 (1997) 213-218. https://doi.org/10.1093/oxfordjournals.rpd.a032137
  5. A. Hasegawa, T. Ohira, M. Maeda, S. Yasumura, K. Tanigawa, Emergency responses and health consequences after the Fukushima accident; evacuation and relocation, Clin. Oncol. 28 (2016) 237-244. https://doi.org/10.1016/j.clon.2016.01.002
  6. J.W. MacFarlane, O.D. Payton, A.C. Keatley, G.P.T. Scott, H. Pullin, R.A. Crane, M. Smilion, I. Popescu, V. Curlea, T.B. Scott, Lightweight aerial vehicles for monitoring, assessment and mapping of radiation anomalies, J. Environ. Radioact. 136 (2014) 127-130. https://doi.org/10.1016/j.jenvrad.2014.05.008
  7. M.F. L'Annunziata, Handbook of Radioactivity Analysis, Academic Press, 2012.
  8. G.F. Knoll, Radiation Detection and Measurement, John Wiley & Sons, 2010.
  9. S. Del Sordo, L. Abbene, E. Caroli, A.M. Mancini, A. Zappettini, P. Ubertini, Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications, Sensors 9 (2009) 3491-3526. https://doi.org/10.3390/s90503491
  10. A.S. Novikov, S.E. Ulin, I. V Chernysheva, V. V Dmitrenko, V.M. Grachev, D. V Petrenko, A.E. Shustov, Z.M. Uteshev, K.F. Vlasik, Xenon detector with high energy resolution for gamma-ray line emission registration, in: Hard X-Ray, Gamma-Ray, Neutron Detect. Phys. XVI, 2014, p. 921318.
  11. S.V. Naydenov, V.D. Ryzhikov, Theoretical analysis of physical limits of energy resolution for detectors of scintillator-photodiode type and ways to improve their spectrometric characteristics, in: Hard X-Ray Gamma-Ray Detect. Phys. V, 2004, pp. 261-271.
  12. B.D. Milbrath, A.J. Peurrung, M. Bliss, W.J. Weber, Radiation detector materials: an overview, J. Mater. Res. 23 (2008) 2561-2581. https://doi.org/10.1557/JMR.2008.0319
  13. A.T. Lintereur, W. Qiu, J.C. Nino, J.E. Baciak, Iodine based compound semiconductors for room temperature gamma-ray spectroscopy, Opt. Photonics Glob. Homel. Secur. IV (2008) 694503.
  14. D. Pennicard, B. Pirard, O. Tolbanov, K. Iniewski, Semiconductor materials for x-ray detectors, MRS Bull. 42 (2017) 445-450. https://doi.org/10.1557/mrs.2017.95
  15. S.J. Bell, P. Aitken-Smith, S. Beeke, S.M. Collins, P.H. Regan, R. Shearman, A comparison of emerging gamma detector technologies for airborne radiation monitoring, J. Phys. Conf. Ser. (2016) 12010.
  16. A.E. Bolotnikov, S. Babalola, G.S. Camarda, Y. Cui, S.U. Egarievwe, R. Hawrami, A. Hossain, G. Yang, R.B. James, Te inclusions in CZT detectors: new method for correcting their adverse effects, IEEE Trans. Nucl. Sci. 57 (2010) 910-919. https://doi.org/10.1109/TNS.2010.2042617
  17. A.E. Bolotnikov, N.M. Abdul-Jabbar, S. Babalola, G.S. Camarda, Y. Cui, A. Hossain, E. Jackson, H. Jackson, J.R. James, A.L. Luryi, others, Optimization of virtual Frisch-grid CdZnTe detector designs for imaging and spectroscopy of gamma rays, in: hard X-Ray Gamma-Ray Detect, Phys IX (2007) 670603.
  18. V.L.A. Kosyachenko, T. Aoki, C.P. Lambropoulos, V.A. Gnatyuk, E.V. Grushko, V.M. Sklyarchuk, O.L. Maslyanchuk, O.F. Sklyarchuk, A. Koike, High energy resolution CdTe Schottky diode $${gamma}$$-ray detectors, Nucl. Sci. Symp. Med. Imaging Conf. (NSS/MIC), 2012 (2012) 4156-4164. IEEE.
  19. V. Gnatyuk, V. Sklyarchuk, T. Aoki, A. Koike, W. Pecharapa, Development of CdTe-based nuclear radiation sensors and related devices, AIP Conf. Proc. (2018) 20012.
  20. H. Haidar, F. Liu, H. Yuan, Calculation of scintillation properties of O1 "$times$ 1 "of the lanthanum bromide scintillation detector using MCNP simulation and experiment, J. Phys. Conf. Ser. (2018) 12063.
  21. S.N. Pyae, V.M. Grachev, V.V. Dmitrenko, S.E. Ulin, K.F. Vlasik, Z.M. Uteshev, A.E. Shustov, A.S. Novikov, D.V. Petrenko, I.V. Chernysheva, Xenon gammadetector applicability for identification and characterization of radioactive waste, Phys. Procedia. 74 (2015) 352-356. https://doi.org/10.1016/j.phpro.2015.09.191
  22. B. Ayaz-Maierhafer, T.A. DeVol, Determination of absolute detection efficiencies for detectors of interest in homeland security, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 579 (2007) 410-413. https://doi.org/10.1016/j.nima.2007.04.143
  23. G.A. Kumar, I. Mazumdar, D.A. Gothe, Experimental measurements and GEANT4 simulations for a comparative study of efficiencies of LaBr3: Ce, NaI (Tl), and BaF2, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 610 (2009) 522-529. https://doi.org/10.1016/j.nima.2009.08.075
  24. C.K. Eun, Y.B. Gianchandani, A wireless-enabled microdischarge-based radiation detector utilizing stacked electrode arrays for enhanced detection efficiency, J. Microelectromechanical Syst. 20 (2011) 636-643. https://doi.org/10.1109/JMEMS.2011.2127461
  25. E.R. Siciliano, J.H. Ely, R.T. Kouzes, B.D. Milbrath, J.E. Schweppe, D.C. Stromswold, Comparison of PVT and NaI (Tl) scintillators for vehicle portal monitor applications, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 550 (2005) 647-674. https://doi.org/10.1016/j.nima.2005.05.056
  26. A. Oberstedt, S. Oberstedt, R. Billnert, W. Geerts, F.-J. Hambsch, J. Karlsson, Identification of prompt fission $${\gamma}$$-rays with lanthanum-chloride scintillation detectors, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 668 (2012) 14-20. https://doi.org/10.1016/j.nima.2011.11.088
  27. A. Oberstedt, R. Billnert, S. Oberstedt, Neutron measurements with lanthanum-bromide scintillation detectors: a first approach, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 708 (2013) 7-14. https://doi.org/10.1016/j.nima.2013.01.005
  28. A. Zoglauer, M. Galloway, M. Amman, S.E. Boggs, J.S. Lee, P.N. Luke, L. Mihailescu, K. Vetter, C.B. Wunderer, First results of the high efficiency multi-mode imager (HEMI), in: Nucl. Sci. Symp. Conf. Rec. (NSS/MIC), 2009, IEEE, 2009, pp. 887-891.
  29. P.N. Luke, M. Amman, J.S. Lee, C.Q. Vu, Pocket-size CdZnTe gamma-ray spectrometer, IEEE Trans. Nucl. Sci. 52 (2005) 2041-2044. https://doi.org/10.1109/TNS.2005.856732
  30. M. Yousaf, T. Akyurek, S. Usman, A comparison of traditional and hybrid radiation detector dead-time models and detector behavior, Prog. Nucl. Energy 83 (2015) 177-185. https://doi.org/10.1016/j.pnucene.2015.03.018
  31. S. Usman, A. Patil, Radiation detector deadtime and pile up: a review of the status of science, Nucl. Eng. Technol. 50 (7) (2018) 1006-1016. https://doi.org/10.1016/j.net.2018.06.014
  32. R. Malhotra, Y.B. Gianchandani, A microdischarge-based neutron radiation detector utilizing a stacked arrangement of micromachined steel electrodes with gadolinium film for neutron conversion, IEEE Sensor. J. 15 (2015) 3863-3870. https://doi.org/10.1109/JSEN.2015.2397006
  33. A. Migdall, S.V. Polyakov, J. Fan, J.C. Bienfang, Single-photon Generation and Detection: Physics and Applications, Academic Press, 2013.
  34. N. Tsoulfanidis, Measurement and Detection of Radiation, CRC press, 2010.
  35. V.E. Kutny, A.V. Rybka, L.N. Davydov, A.O. Pudov, S.A. Sokolov, G.A. Kholomeyev, S.I. Melnikov, A.A. Turchin, Gamma-ray detector based on high pressure xenon for radiation and environmental safety, Probl. At. Sci. Technol. (2017) 103-108.
  36. F.G.A. Quarati, M.S. Alekhin, K.W. Kramer, P. Dorenbos, Co-doping of CeBr3 scintillator detectors for energy resolution enhancement, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 735 (2014) 655-658. https://doi.org/10.1016/j.nima.2013.10.004
  37. M.S. Alekhin, D.A. Biner, K.W. Kramer, P. Dorenbos, Optical and scintillation properties of CsBa2I5: Eu2+, J. Lumin. 145 (2014) 723-728. https://doi.org/10.1016/j.jlumin.2013.08.058
  38. Z.T. Kang, R. Rosson, B. Barta, C. Han, J.H. Nadler, M. Dorn, B. Wagner, B. Kahn, GdBr3: Ce in glass matrix as nuclear spectroscopy detector, Radiat. Meas. 48 (2013) 7-11. https://doi.org/10.1016/j.radmeas.2012.11.010
  39. A.O. Pudov, A.S. Abyzov, S.A. Sokolov, L.N. Davydov, A.V. Rybka, V.E. Kutny, S.I. Melnikov, G.A. Kholomyeyev, S.A. Leonov, A.A. Turchin, Measurements and modeling of charge carrier lifetime in compressed xenon, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 892 (2018) 98-105. https://doi.org/10.1016/j.nima.2018.03.001
  40. W. Chewpraditkul, K. Sreebunpeng, M. Nikl, J.A. Mares, K. Nejezchleb, A. Phunpueok, C. Wanarak, Comparison of Lu3Al5O12: Pr3+ and Bi4G-3O12 scintillators for gamma-ray detection, Radiat. Meas. 47 (2012) 1-5. https://doi.org/10.1016/j.radmeas.2011.08.023
  41. M. Grodzicka, M. Moszynski, T. Szczkesniak, M. Kapusta, M. Szawlowski, D. Wolski, Energy resolution of small scintillation detectors with SiPM light readout, J. Instrum. 8 (2013), P02017.
  42. T. Huang, Q. Fu, S. Lin, B. Wang, NaI (Tl) scintillator read out with SiPM array for gamma spectrometer, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 851 (2017) 118-124. https://doi.org/10.1016/j.nima.2017.01.068
  43. T.J. Hajagos, C. Liu, N.J. Cherepy, Q. Pei, High-Z sensitized plastic scintillators: a review, Adv. Mater. (2018) 1706956. https://doi.org/10.1002/adma.201706956
  44. P. Wangyang, C. Gong, G. Rao, K. Hu, X. Wang, C. Yan, L. Dai, C. Wu, J. Xiong, Recent advances in halide perovskite photodetectors based on different dimensional materials, Adv. Opt. Mater. 6 (2018), 1701302. https://doi.org/10.1002/adom.201701302
  45. O. Nazarenko, S. Yakunin, V. Morad, I. Cherniukh, M. V Kovalenko, Single crystals of caesium formamidinium lead halide perovskites: solution growth and gamma dosimetry, NPG Asia Mater. 9 (2017) e373. https://doi.org/10.1038/am.2017.45
  46. T. Koike, S. Uno, T. Uchida, M. Sekimoto, T. Murakami, K. Miyama, M. Shoji, T. Fujiwara, E. Nakano, J. Chiba, A new gamma-ray detector with gold-plated gas electron multiplier, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 648 (2011) 180-185. https://doi.org/10.1016/j.nima.2011.05.071
  47. G. Takoudis, S. Xanthos, A. Clouvas, M. Antonopoulos-Domis, C. Potiriadis, J. Silva, Spatial and spectral gamma-ray response of plastic scintillators used in portal radiation detectors; comparison of measurements and simulations, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 599 (2009) 74-81. https://doi.org/10.1016/j.nima.2008.10.020
  48. S. Das, J. Saini, A.K. Dubey, Measurement of decay time constant of a plastic scintillator by a delayed coincidence method, DAE Symp. Nucl. Phys. (2015) 1068-1069.
  49. M. Nikl, A. Yoshikawa, Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection, Adv. Opt. Mater. 3 (2015) 463-481. https://doi.org/10.1002/adom.201400571
  50. L. Stand, M. Zhuravleva, B. Chakoumakos, J. Johnson, A. Lindsey, C.L. Melcher, Scintillation properties of Eu 2+-doped KBa 2 I 5 and K 2 Bai 4, J. Lumin. 169 (2016) 301-307. https://doi.org/10.1016/j.jlumin.2015.09.013
  51. L. Stand, M. Zhuravleva, A. Lindsey, C.L. Melcher, Growth and characterization of potassium strontium iodide: a new high light yield scintillator with 2.4% energy resolution, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 780 (2015) 40-44. https://doi.org/10.1016/j.nima.2015.01.052
  52. E.D. Bourret-Courchesne, G. Bizarri, R. Borade, Z. Yan, S.M. Hanrahan, G. Gundiah, A. Chaudhry, A. Canning, S.E. Derenzo, Eu2+-doped Ba2CsI5, a new high-performance scintillator, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 612 (2009) 138-142. https://doi.org/10.1016/j.nima.2009.10.146
  53. M.S. Alekhin, S. Weber, K.W. Kramer, P. Dorenbos, Optical properties and defect structure of Sr2+ co-doped LaBr3: 5% Ce scintillation crystals, J. Lumin. 145 (2014) 518-524. https://doi.org/10.1016/j.jlumin.2013.08.019
  54. K.H. Kim, A.E. Bolotnikov, G.S. Camarda, R. Tappero, A. Hossain, Y. Cui, J. Franc, L. Marchini, A. Zappettini, P. Fochuk, others, New approaches for making large-volume and uniform CdZnTe and CdMnTe detectors, IEEE Trans. Nucl. Sci. 59 (2012) 1510-1515. https://doi.org/10.1109/TNS.2012.2202917
  55. C. Leak, W. Koehler, S. O'Neal, Z. He, K. Hitomi, Recent results from pixelated TlBr detectors with Tl electrodes operated at room-temperature, in: Nucl. Sci. Symp. Med. Imaging Conf. Room-Temperature Semicond. Detect. Work. (NSS/MIC/RTSD), 2016, 2016, pp. 1-3.
  56. M. Streicher, Y. Zhu, F. Zhang, Y.A. Boucher, C.G. Wahl, H. Yang, Z. He, A portable 2$times$ 2 digital 3D CZT imaging spectrometer system, in: Nucl. Sci. Symp. Med. Imaging Conf. (NSS/MIC), 2014, IEEE, 2014, pp. 1-3.
  57. S. Watanabe, T. Takahashi, Y. Okada, C. Sato, M. Kouda, T. Mitani, Y. Kobavashi, K. Nakazawa, Y. Kuroda, M. Onishi, CdTe stacked detectors for Gamma-ray detection, in: Nucl. Sci. Symp. Conf. Rec. 2001, IEEE, 2001, pp. 2434-2438.
  58. J. Saegusa, K. Kawasaki, A. Mihara, M. Ito, M. Yoshida, Determination of detection efficiency curves of HPGe detectors on radioactivity measurement of volume samples, Appl. Radiat. Isot. 61 (2004) 1383-1390. https://doi.org/10.1016/j.apradiso.2004.04.004
  59. Y. He, L. Matei, H.J. Jung, K.M. McCall, M. Chen, C.C. Stoumpos, Z. Liu, J.A. Peters, D.Y. Chung, B.W. Wessels, others, High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr 3 single crystals, Nat. Commun. 9 (2018) 1609. https://doi.org/10.1038/s41467-018-04073-3
  60. M. Isaksson, C.L. Raaf, Environmental Radioactivity and Emergency Preparedness, CRC Press, 2017.
  61. F.G.A. Quarati, P. Dorenbos, J. der Biezen, A. Owens, M. Selle, L. Parthier, P. Schotanus, Scintillation and detection characteristics of high-sensitivity CeBr3 gamma-ray spectrometers, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 729 (2013) 596-604. https://doi.org/10.1016/j.nima.2013.08.005
  62. H. Toivonen, Airborne gamma spectrometrydtowards integration of European operational capability, Radiat. Protect. Dosim. 109 (2004) 137-140. https://doi.org/10.1093/rpd/nch248
  63. D. Connor, P.G. Martin, T.B. Scott, Airborne radiation mapping: overview and application of current and future aerial systems, Int. J. Rem. Sens. 37 (2016) 5953-5987. https://doi.org/10.1080/01431161.2016.1252474
  64. K. Saito, Mapping and modelling of radionuclide distribution on the ground due to the Fukushima accident, Radiat. Protect. Dosim. 160 (2014).
  65. A.-J. Garcia-Sanchez, E.A. Garcia Angosto, P.A. Moreno Riquelme, A. Serna Berna, D. Ramos-Amores, Ionizing radiation measurement solution in a hospital environment, Sensors 18 (2018) 510.
  66. M.I. Kaniu, H.K. Angeyo, I.G. Darby, L.M. Muia, Rapid in-situ radiometric assessment of the Mrima-Kiruku high background radiation anomaly complex of Kenya, J. Environ. Radioact. 188 (2018) 47-57. https://doi.org/10.1016/j.jenvrad.2017.10.014
  67. I.P. Susila, A. Yuniarto, C. Cahyana, Monitoring and analysis of environmental gamma dose rate around serpong nuclear complex, At. Indones. 43 (2017) 87-92. https://doi.org/10.17146/aij.2017.681
  68. Y. Omori, H. Wakamatsu, A. Sorimachi, T. Ishikawa, Radiation survey on Fukushima Medical University premises about four years after the Fukushima nuclear disaster, Fukushima J. Med. Sci. 62 (2016) 1-17. https://doi.org/10.5387/fms.2015-16
  69. R.M. Vazquez, E. Gutierrez, Mobile robot for gamma radiation detection with long range remote control, Mechatronics, Electron. Automot. Eng. (ICMEAE), 2015 Int. Conf. (2015) 175-180.
  70. S. Kobayashi, T. Shinomiya, H. Kitamura, T. Ishikawa, H. Imaseki, M. Oikawa, S. Kodaira, N. Miyaushiro, Y. Takashima, Y. Uchihori, Radioactive contamination mapping of northeastern and eastern Japan by a car-borne survey system, Radi-Probe, J. Environ. Radioact. 139 (2015) 281-293. https://doi.org/10.1016/j.jenvrad.2014.07.026
  71. S. Syarbaini, B. Bunawas, I.P. Susila, Design and development of carborne survey equipment, At. Indones. 41 (2015) 97-102. https://doi.org/10.17146/aij.2015.383
  72. M. Andoh, Y. Nakahara, S. Tsuda, T. Yoshida, N. Matsuda, F. Takahashi, S. Mikami, N. Kinouchi, T. Sato, M. Tanigaki, others, Measurement of air dose rates over a wide area around the Fukushima Dai-ichi Nuclear Power Plant through a series of car-borne surveys, J. Environ. Radioact. 139 (2015) 266-280. https://doi.org/10.1016/j.jenvrad.2014.05.014
  73. M. Tanigaki, R. Okumura, K. Takamiya, N. Sato, H. Yoshino, H. Yamana, Development of a car-borne g-ray survey system, KURAMA, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 726 (2013) 162-168. https://doi.org/10.1016/j.nima.2013.05.059
  74. A. Baeza, J.A. Corbacho, J. Miranda, Design and implementation of a mobile radiological emergency unit integrated in a radiation monitoring network, IEEE Trans. Nucl. Sci. 60 (2013) 1400-1407. https://doi.org/10.1109/TNS.2013.2245511
  75. Y. Ishigaki, Y. Matsumoto, R. Ichimiya, K. Tanaka, Development of mobile radiation monitoring system utilizing smartphone and its field tests in Fukushima, IEEE Sensor. J. 13 (2013) 3520-3526. https://doi.org/10.1109/JSEN.2013.2272734
  76. D. Williams, H. Bisby, The aerial survey of terrestrial radioactivity, Proc. IEE-Part B Electron. Commun. Eng. 108 (1961) 403-412. https://doi.org/10.1049/pi-b-2.1961.0068
  77. C. Nuccetelli, D.M. Castelluccio, E. Cisbani, S. Frullani, Experience at the istituto superiore di sanita on environmental research and monitoring with in-situ techniques, Situ Anal. Charact. Contam. Sites Using Nucl. Spectrom. Tech. (n.d.) 119.
  78. R.C. Runkle, L.E. Smith, A.J. Peurrung, The photon haystack and emerging radiation detection technology, J. Appl. Phys. 106 (2009) 7.
  79. S.D. Billings, B.R. Minty, G.N. Newsam, Deconvolution and spatial resolution of airborne gamma-ray surveys, Geophysics 68 (2003) 1257-1266. https://doi.org/10.1190/1.1598118
  80. D.M. Pfund, K.D. Jarman, B.D. Milbrath, S.D. Kiff, D.E. Sidor, Low count anomaly detection at large standoff distances, IEEE Trans. Nucl. Sci. 57 (2010) 309-316. https://doi.org/10.1109/TNS.2009.2035805
  81. M. Weinstein, A. Heifetz, R. Klann, Detection of nuclear sources in search survey using dynamic quantum clustering of gamma-ray spectral data, Eur. Phys. J. Plus. 129 (2014) 239. https://doi.org/10.1140/epjp/i2014-14239-3
  82. J.E. McLaughlin, H.L. Beck, Environmental radiation dosimetry for nuclear facilities and problems, IEEE Trans. Nucl. Sci. 20 (1973) 36-42. https://doi.org/10.1109/TNS.1973.4326883
  83. A.G. Darnley, The Relevance of Airborne and Ground Gamma Ray Spectrometry to Global Geochemical Baselines, Appl. Uranium Explor. Data Tech. Environ. Stud. IAEA-TECDOC-827, IAEA, Vienna, 1995, pp. 47-58.
  84. D.C.W. Sanderson, J.D. Allyson, A.N. Tyler, E.M. Scott, Environmental Applications of Airborne Gamma Spectrometry, 1995.
  85. I. Winkelmann, C. Strobl, M. Thomas, Aerial measurements of artificial radionuclides in Germany in case of a nuclear accident, J. Environ. Radioact. 72 (2004) 225-231. https://doi.org/10.1016/S0265-931X(03)00205-4
  86. Z.G. Burson, Airborne surveys of terrestrial gamma radiation in environmental research, IEEE Trans. Nucl. Sci. 21 (1974) 558-571. https://doi.org/10.1109/TNS.1974.4327515
  87. S. Okuyama, T. Torii, Y. Nawa, I. Kinoshita, A. Suzuki, M. Shibuya, N. Miyazaki, Development of a remote radiation monitoring system using unmanned helicopter, Int. Congr. Ser. (2005) 422-423.
  88. J. Towler, B. Krawiec, K. Kochersberger, Radiation mapping in post-disaster environments using an autonomous helicopter, Rem. Sens. 4 (2012) 1995-2015. https://doi.org/10.3390/rs4071995
  89. K. Kochersberger, K. Kroeger, B. Krawiec, E. Brewer, T. Weber, Post-disaster remote sensing and sampling via an autonomous helicopter, J. Field Robot. 31 (2014) 510-521. https://doi.org/10.1002/rob.21502
  90. G. Micconi, J. Aleotti, S. Caselli, G. Benassi, N. Zambelli, A. Zappettini, Haptic guided UAV for detection of radiation sources in outdoor environments, Res. Educ. Dev. Unmanned Aer. Syst. (RED-UAS), 2015 Work. (2015) 265-271.
  91. S. Dadon, A. Broide, M. Sheinfeld, Y. Kadmon, Y. Cohen, I. Halevy, Radioactive contamination estimation by airborne survey based NaI detectors, IEEE Trans. Nucl. Sci. 63 (2016) 630-633. https://doi.org/10.1109/TNS.2016.2514268
  92. Y. Sato, S. Ozawa, Y. Terasaka, M. Kaburagi, Y. Tanifuji, K. Kawabata, H.N. Miyamura, R. Izumi, T. Suzuki, T. Torii, Remote radiation imaging system using a compact gamma-ray imager mounted on a multicopter drone, J. Nucl. Sci. Technol. 55 (2018) 90-96. https://doi.org/10.1080/00223131.2017.1383211
  93. S. Mochizuki, J. Kataoka, L. Tagawa, Y. Iwamoto, H. Okochi, N. Katsumi, S. Kinno, M. Arimoto, T. Maruhashi, K. Fujieda, others, First demonstration of aerial gamma-ray imaging using drone for prompt radiation survey in Fukushima, J. Instrum. 12 (2017) P11014.
  94. Y. Shikaze, Y. Nishizawa, Y. Sanada, T. Torii, J. Jiang, K. Shimazoe, H. Takahashi, M. Yoshino, S. Ito, T. Endo, others, Field test around Fukushima Daiichi nuclear power plant site using improved Ce: Gd3 (Al, Ga) 5O12 scintillator Compton camera mounted on an unmanned helicopter, J. Nucl. Sci. Technol. 53 (2016) 1907-1918. https://doi.org/10.1080/00223131.2016.1185980
  95. Y. Sanada, T. Torii, Aerial radiation monitoring around the Fukushima Daiichi nuclear power plant using an unmanned helicopter, J. Environ. Radioact. 139 (2015) 294-299. https://doi.org/10.1016/j.jenvrad.2014.06.027
  96. P.G. Martin, O.D. Payton, J.S. Fardoulis, D.A. Richards, T.B. Scott, The use of unmanned aerial systems for the mapping of legacy uranium mines, J. Environ. Radioact. 143 (2015) 135-140. https://doi.org/10.1016/j.jenvrad.2015.02.004
  97. K. Boudergui, F. Carrel, T. Domenech, N. Guenard, J.-P. Poli, A. Ravet, V. Schoepff, R. Woo, Development of a drone equipped with optimized sensors for nuclear and radiological risk characterization, Adv. Nucl. Instrum. Meas. Methods Their Appl. (ANIMMA), 2011 2nd Int. Conf. (2011) 1-9.
  98. R. Pollanen, H. Toivonen, K. Perajarvi, T. Karhunen, T. Ilander, J. Lehtinen, K. Rintala, T. Katajainen, J. Niemela, M. Juusela, Radiation surveillance using an unmanned aerial vehicle, Appl. Radiat. Isot. 67 (2009) 340-344. https://doi.org/10.1016/j.apradiso.2008.10.008
  99. S. Okuyama, T. Torii, A. Suzuki, M. Shibuya, N. Miyazaki, A remote radiation monitoring system using an autonomous unmanned helicopter for nuclear emergencies, J. Nucl. Sci. Technol. 45 (2008) 414-416. https://doi.org/10.1080/00223131.2008.10875877
  100. R.L. Grasty, B.R.S. Minty, A Guide to the Techncial Specifications for Airborne Gamma-Ray Surveys, Citeseer, 1990.
  101. M. Alamaniotis, J. Mattingly, L.H. Tsoukalas, Kernel-based machine learning for background estimation of NaI low-count gamma-ray spectra, IEEE Trans. Nucl. Sci. 60 (2013) 2209-2221. https://doi.org/10.1109/TNS.2013.2260868
  102. T. Smith, S. Cao, K.J. Kearfott, Temporal fluctuations in indoor background gamma radiation using NaI (Tl), Health Phys. 114 (2018) 360-372. https://doi.org/10.1097/HP.0000000000000813
  103. K. Kumagai, H. Ookubo, H. Kimura, Discrimination between natural and other gamma ray sources from environmental gamma ray dose rate monitoring data, Radiat. Protect. Dosim. 167 (2015) 293-297. https://doi.org/10.1093/rpd/ncv265
  104. K.A.P. Kumar, G.A.S. Sundaram, R. Thiruvengadathan, Advances in detection algorithms for radiation monitoring, J. Environ. Radioact. 217 (2020), 106216. https://doi.org/10.1016/j.jenvrad.2020.106216
  105. E.Z. Sombrito, M.C. Tangonan, A.D. Bulos, Detector Efficiency and Energy Calibration of the CRD HPGe Gamma Spectrometer System, 1989.
  106. J. Rajendran, G.A.S. Sundaram, Design and evaluation of printed log periodic dipole antenna for an L band electrically steerable array system, Comput. Syst. Commun. (ICCSC), 2014 First Int. Conf. (2014) 311-316.
  107. M. Kort, Weapons of Mass Destruction, Infobase Publishing, 2010.
  108. M.J Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, K. Olsen, XCOM: photon cross section database, National Institute of Standards and Technology, Gaithersburg, Gaithersburg, MD. (2005). http://physics.nist.gov/xcom.

Cited by

  1. State-of-the-Art Mobile Radiation Detection Systems for Different Scenarios vol.21, pp.4, 2020, https://doi.org/10.3390/s21041051
  2. A High Seebeck Voltage Thermoelectric Module with P‐type and N‐type MAPbI 3 Perovskite Single Crystals vol.7, pp.3, 2020, https://doi.org/10.1002/aelm.202001003
  3. Detectors and Cultural Heritage: The INFN-CHNet Experience vol.11, pp.8, 2020, https://doi.org/10.3390/app11083462
  4. Gamma radiation attenuation characteristics of polyimide composite with WO2 vol.137, 2020, https://doi.org/10.1016/j.pnucene.2021.103795
  5. Localizing hot spots in Poisson radiation data matrices: nonnegative tensor factorization and phase congruency vol.8, pp.1, 2020, https://doi.org/10.1186/s40537-021-00510-1