• Title/Summary/Keyword: Radial error

Search Result 274, Processing Time 0.027 seconds

Q-Factor Measurement of a Dielectric Resonator in an MIC Environment Using Effective Dielectric Constant (유효 유전율을 이용한 MIC 구조에서의 유전체 공전기 양호도 측정)

  • 탁윤도;최준호;이주섭;김영식
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.243-247
    • /
    • 2000
  • In this parer, Q-factor measurement method for a dielectric resonator in an MIC environment using the effective dielectric constant is proposed. The effective dielectric constant technique is applied to both radial and axial directions. The proposed method shows that the accuracy of the Q-factor measurement is to be improved with 2% ~ 3% relative error.

  • PDF

A Comparison of HPL of RAIM Algorithm (RAIM 알고리즘의 허용오차 경계 비교)

  • 이중원;지규인
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.52-52
    • /
    • 2000
  • The HPL(Horizontal Protection Limit) means bound of radial horizontal error with given probability in satellite navigation system. RAIM algorithm is not available if HPL exceeds HAL (Horizontal Alert Limit). So exact calculation of HPL is very significant in RAIM algorithm. In this paper the methods that calculate HPL their own way a]:e studied and compared by simulation. And availability of RAIM algorithm is evaluated also.

  • PDF

Empirical Choice of the Shape Parameter for Robust Support Vector Machines

  • Pak, Ro-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.4
    • /
    • pp.543-549
    • /
    • 2008
  • Inspired by using a robust loss function in the support vector machine regression to control training error and the idea of robust template matching with M-estimator, Chen (2004) applies M-estimator techniques to gaussian radial basis functions and form a new class of robust kernels for the support vector machines. We are specially interested in the shape of the Huber's M-estimator in this context and propose a way to find the shape parameter of the Huber's M-estimating function. For simplicity, only the two-class classification problem is considered.

동적 비선형 신호의 온라인 모델링

  • 한정희;왕지남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.371-376
    • /
    • 1994
  • This paper presents an on-line modeling method approach for the machine condition. the machine condition is continuously monitored with a sensor such as, a vibration, a current, an acoustic emission (AE) sensor. In this study, neural network modeling by radial basis function is designed for analysis a prediction error. An on-line learning algorithm is designed using the RLS(recursive least square) estimation and the existing clustering method of Kohonen neural network. Experimental results show that the proposed RBNN modeling is suitable for predicting simulated data.

  • PDF

Development of Unfolding Radial Velocity Algorithm for Dual PRF Mode of Yong-In Testbed(YIT) Radar (용인테스트베드레이다를 이용한 Dual PRF 모드의 시선속도 접힘 풀기 알고리즘 개발)

  • Kim, Hye-Ri;Suk, Mi-Kyung;Nam, Kyung-Yeub;Ko, Jeong-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.6
    • /
    • pp.521-530
    • /
    • 2016
  • Weather radar is observation equipment that transmits electromagnetic waves and receives backscattered signals from the targets. The weather radar systems of the Korea Meteorological Administration have a doppler mode that can extract the target's radial velocity. However, the radial velocity over the maximum unambiguous velocity(${\nu}_m$) for which is in a trade-off relationship with the maximum unambiguous range is folded. Therefore, a dual PRF mode of which transmits and receives signals using two different PRFs(high and low) must be used to extend the vm while maintaining the maximum unambiguous range. Using a dual PRF mode, vm can be extended to the amount of lowest common denominator of two observed vm from high and low PRF. For this extension, we have developed a velocity unfolding algorithm of which uses several criteria for classification considering observed velocity differences between high and low PRF and their error boundary. Then, correction factors are calculated for each class and are applied to unfold radial velocity. The developed algorithm was applied to the Yong-In Testbed(YIT) radar and the generated better performance of radial velocity extraction than those of the previous system.

A Robust Sensorless Vector Control System for Induction Motors

  • Huh Sung-Hoe;Choy Ick;Park Gwi-Tae
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.443-447
    • /
    • 2001
  • In this paper, a robust sensorless vector control system for induction motors with a speed estimator and an uncertainty observer is presented. At first, the proposed speed estimator is based on the MRAS(Mode Reference Adaptive System) scheme and constructed with a simple fuzzy logic(FL) approach. The structure of the proposed FL estimator is very simple. The input of the FL is the rotor flux error difference between reference and adjustable model, and the output is the estimated incremental rotor speed Secondly, the unmodeled uncertainties such as parametric uncertainties and external load disturbances are modeled by a radial basis function network(RBFN). In the overal speed control system, the control inputs are composed with a norminal control input and a compensated control input, which are from RBFN observer output and the modeling error of the RBFN, repectively. The compensated control input is derived from Lyapunov unction approach. The simulation results are presented to show the validity of the proposed system.

  • PDF

Evaluation and Analysis of Dynamic Characteristics in Tilt Actuator for High Density Optical Storage Devices (고밀도 광저장 기기용 틸트 액추에이터 동특성 분석 및 평가)

  • 김석중;이용훈;최한국
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.584-595
    • /
    • 2000
  • We design a new actuator for high density optical device in order to control the radial tilting motion. The newly designed actuator makes it possible to control the tilting motion actively, while the coventional actuator compress tilting motion with passive spring. First of all, We present 3-dimensional modeling of actuator and accomplish the modal analysis and magnetic analysis of actuator. Due to these results, a new designed actuator has performance of high sensitivity and high second resonance frequency. Secondly, We present the 3-DOF dynamic modeling of the 4-wire spring type actuator. sensitivity analysis is performed to consider the assembling error, such as the difference of mass center and force center. From these results, the sensitivities of rotation due to the assembly error are revealed and design criteria of rotation is presented. And experimental results of a newly designed actuator are presented and compared with theoretical results. Finally, We propose a dynamic tilt compensation and high acceleration actuator for high density optical storage devices.

  • PDF

UNCERTAINTIES IN THE STAR-COUNT ANALYSIS

  • Hong, Seung-Soo;Lee, See-Woo
    • Journal of The Korean Astronomical Society
    • /
    • v.21 no.2
    • /
    • pp.155-171
    • /
    • 1988
  • We have examined how sensitively the extinction value determined by the method of star-count depends on such factors as the plate limit, the size of counting reseau, the non-linearity in the number distribution of stars with magnitude, and the angular resolution demanded by the given problem. We let the Poisson distribution portray the statistical nature of the countings, and chose the region containing the globule Barnard 361 as an example field. Uncertainties due to various combinations of the factors are presented in graphic forms: (1) Dynamic range in the extinction measurements is evaluated as a function of reseau size for varying plate limits. (2) Statistical errors involved in the star-count are analized in terms of the signal-to-noise ratio, the plate limit and the reseau size. (3) Systematic error due to the non-linearity in the number distribution are thoroughly analized. (4) Finally, a methodology is presented for correcting the systematic error in the observed radial density gradient. These graphs are meant to be used in selecting proper size of the reseau and in estimating errors inherent to the star-count analysis.

  • PDF

The Organization of Rotational Accuracy Measurement System of NC Lathe Spindle (NC 선반 주축의 회전정도 측정 시스템의 구성)

  • Kim, Young-Seuk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.5
    • /
    • pp.21-26
    • /
    • 2005
  • It is important to measure the rotational accuracy of NC lathe spindle as it affects to the qualities of all machines machined by the NC lathe using in industries. The bad rotational accuracy of NC lathe spindle are caused mainly by wearness of the spindle in using and quality of spindle when machining and using low level bearings. It occurs especially in case of NC lathes because the cutting force acting to work-piece act on one side to the spindle not to both sides symmetrically. Therefore in this study, constructing experimental appratus for measuring of rotational accuracy by using eddy current type gap sensors, converters, screw terminal, data acquisition board inserted in computer and software f3r data acquisition, DT VEE ver. 5.0 and then error data acquired in the rotational accuracy test of NC lathe spindle are analysed in plots and statistical treatments.

Measuring of Rotational Accuracy of Lathe Spindle (선반 주축의 회전운동 정도 측정)

  • Kim, Young-Seuk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.43-48
    • /
    • 2007
  • It is important to measure the rotational accuracy of lathe spindle as it affects to the qualities of all machines machined by the lathe using in industries. The bad rotational accuracy of lathe spindle are caused mainly by wearness of the spindle in using and quality of spindle when machining and using low level bearings. It occurs especially in case of lathes because the cutting force acting to work-piece act on one side to the spindle not to both sides symmetrically. Therefore in this study, constructing experimental apparatus for measuring of rotational accuracy by using eddy current type gap sensors AEC5706PS and sensors, s-06LN, data acquisition board DT9834(USB type) and software for data acquisition, DT Measure Foundry ver. 4.0.7 etc., error data acquired in the rotational accuracy test of lathe spindle are analysed in plots and statistical treatments.