• Title/Summary/Keyword: Radial Error

Search Result 273, Processing Time 0.029 seconds

On the equivalence of reaction rate in energy collapsing of fast reactor code SARAX

  • Xiao, Bowen;Wei, Linfang;Zheng, Youqi;Zhang, Bin;Wu, Hongchun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.732-740
    • /
    • 2021
  • Scattering resonance of medium mass nuclides leads complex spectrum in the fast reactor, which requires thousands of energy groups in the spectrum calculation. When the broad-group cross sections are collapsed, reaction rate cannot be completely conserved. To eliminate the error from energy collapsing, the Super-homogenization method in energy collapsing (ESPH) was employed in the fast reactor code SARAX. An ESPH factor was derived based on the ESPH-corrected SN transport equation. By applying the factor in problems with reflective boundary condition, both the effective multiplication factor and reaction rate were conserved. The fixed-source iteration was used to ensure the stability of ESPH iteration. However, in the energy collapsing process of SARAX, the vacuum boundary condition was adopted, which was necessary for fast reactors with strong heterogeneity. To further reduce the error caused by leakage, an additional conservation factor was proposed to correct the neutron current in energy collapsing. To evaluate the performance of ESPH with conservation factor, numerical benchmarks of fast reactors were calculated. The results of broad-group calculation agreed well with the direct full-core Monte-Carlo calculation, including the effective multiplication factor, radial power distribution, total control rod worth and sodium void worth.

MGGC2.0: A preprocessing code for the multi-group cross section of the fast reactor with ultrafine group library

  • Kui Hu;Xubo Ma;Teng Zhang;Xuan Ma;Zifeng Huang;Yixue Chen
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2785-2796
    • /
    • 2023
  • How to generate the precise broad group cross section is important for the fast reactor design. In this study, a fast reactor multi-group cross-section generation code MGGC2.0 are developed in-house for processing ultrafine group MATXS format library. Validation and verification are performed for MGGC2.0 code by applying the benchmarks of ICSBEP handbook, and the results of MGGC2.0 agree well with that of MCNP. The consistent PN method with critical buckling search is in good agreement that condensed with TWODANT flux and flux moment for the inner core and outer core region. For the radial blanket and reflector, two region approximation method has been applied in MGGC2.0 by using collision Probability Method neutron flux solver. The RBEC-M benchmark was used to verify the power distribution calculation, and the relative error of power distribution comparison with the reference are less than 0.8% in the fuel region and the maximum relative error is 5.58% in the reflector region. Therefore, the precise broad cross section can be generated by MGGC2.0 for fast reactor.

Geometric Errors Estimation of a Rotary Table using Double Ball-bar (볼바를 사용한 회전 테이블의 기하학적 오차 추정)

  • Lee, Kwang-Il;Lee, Dong-Mok;Kweon, Sung-Hwan;Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.11
    • /
    • pp.98-105
    • /
    • 2010
  • In this paper, double ball-bar is used to estimate the geometric errors of a rotary table, which includes one-axial motion, two-radial motions and two-tilt motions, except the angular positioning error. To simplify the measurement procedures, three measurement steps have been designed and developed. At each measurement step, one end of the double ball-bar is fixed at the nose of spindle and the other end is located on the rotary table. And specific circular test path is planned to keep the distance between two balls as constant at ideal case. The relationship including the geometric errors of a rotary table and the measured distance between two balls which is distorted by the geometric errors is defined by using ball-bar equation. Each geometric error is modeled as $4^{th}$ order polynomial considering $C^1$-continuity. Finally the coefficients of polynomial are calculated by least-square method. Simulation is done to check the validation of the suggested method considering set-up errors and measurement noise. Suggested method is applied to estimate geometric errors of a rotary table of a 5-axis machine tool.

Development of Multi-functional Centerless Grinding System with 600 mm Wide Grinding Wheels (600 mm 급 다기능 광폭 센터리스 연삭시스템 개발)

  • Oh, Jung Soo;Cho, Chang Rae;Tsukishima, Hidehiro;Cho, Soon Joo;Park, Chung Hong;Oh, Jeong Seok;Whang, In Bum;Lee, Won Jae;Kim, Seok Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1129-1137
    • /
    • 2013
  • We report a centerless grinding machine which can perform multi-function with 600 mm wide grinding wheels. By increasing manufacturing area, long workpiece such as camshaft and steering shaft, is allowed to grind more quickly, compared with cylindrical grinding system. In this paper, the design of centerless grinding machine puts emphasis on symmetry to exploit the thermal stability. Results of finite element analysis shows that the difference of the structural deflection in the front and rear guideways is less than $1.5{\mu}m$ due to symmetric design. The difference is less than $3.0{\mu}m$, even though the thermal deformation is considered. According to the performance evaluation, the radial error motion of the G/W spindle, which is measured by applying Donaldson Ball Reversal, is about 1.1${\mu}m$. The yaw error of the G/W slide is improved from 2.1 arcsec to 0.5 arcsec by readjusting the slide preload and ball screw.

An Energy Consumption Prediction Model for Smart Factory Using Data Mining Algorithms (데이터 마이닝 기반 스마트 공장 에너지 소모 예측 모델)

  • Sathishkumar, VE;Lee, Myeongbae;Lim, Jonghyun;Kim, Yubin;Shin, Changsun;Park, Jangwoo;Cho, Yongyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.5
    • /
    • pp.153-160
    • /
    • 2020
  • Energy Consumption Predictions for Industries has a prominent role to play in the energy management and control system as dynamic and seasonal changes are occurring in energy demand and supply. This paper introduces and explores the steel industry's predictive models of energy consumption. The data used includes lagging and leading reactive power lagging and leading current variable, emission of carbon dioxide (tCO2) and load type. Four statistical models are trained and tested in the test set: (a) Linear Regression (LR), (b) Radial Kernel Support Vector Machine (SVM RBF), (c) Gradient Boosting Machine (GBM), and (d) Random Forest (RF). Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) are used for calculating regression model predictive performance. When using all the predictors, the best model RF can provide RMSE value 7.33 in the test set.

A Sttudy on the Optimal estimation of the Fixed Position and Compterization of the Navigational Calculations (실측선위의 정도개선과 항법계산의 전산화에 관한 연구)

  • 하주식;윤여정
    • Journal of the Korean Institute of Navigation
    • /
    • v.7 no.2
    • /
    • pp.1-45
    • /
    • 1983
  • This paper concerns the applications of the Kalman filter to navigation and the develment of computer programs of the navigational calculations. Methods to apply the Kalman filter to celestial fix, fix by cross bearing and cocked hat are proposed, and numerical simulations under various noise conditiions are conducted. The accuracy of the optimal positions obtained by the Kalman filter is compared with that of the fixed positiions by radial error method. In the case of celestial fix, an algorithm to estimate the optimal positions by using the linear Kalman filter is presented. The optimal positions by the Kalman filter are compared with the running fixes and with the most probable positions obtained from a single line of position. It is confirmed that the resutls of the proposed method are more accurate than the others. In practical piloting, bearings are generally measured intermittently and the measurement process is nonlinear. It is, therefore, difficult for us to apply the Kalman filter to fix by cross bearing. In order to be used in such an unfavorable case, the extended Kalman filter is revised and the aplicability of the revised extended Kalman filter is checked by numerical simulation under various noise conditions. In a cocked hat, an inside or outside fix is dependent only upon azimuth spread, if the error of each line of position is assumed to be equal both in magnitude and sign. A new technique of selecting a ship's position between an inside fix and an outside fix in a cocked hat by using fix determinant derived from the equation of three lines of position is also presented. The relations among the optimal position by Kalman filter, incentre (or excentre) and random error centtre of the cocked hat are discussed theoretically and the accuracy of the optimal position is compared with that of the others by numerical simulation.

  • PDF

Three-Dimensional Finite Element Analysis of a Vacuum Interrupter (진공 인터럽터의 3차원 유한요소해석)

  • Choi, Seung-Kil;Kang, Hyung-Boo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.10
    • /
    • pp.693-698
    • /
    • 1999
  • Vacuum interrupters have a special asymmetric electrode structure to generate an magnetic field and consequently to increase the interrupting ability. Accordingly 2-dimensional analysis has a large analysis error because radial flux can not be considered. In this paper, in order to analyse the electric field distribution of a vacuum interrupter with arc shield more accurately, 3-dimensional finite element method(FEM) is used. The induced electric potentials of floating shield was increased with the gap distance, which is because the relative position of shield is closer to the fixed contact so that the capacitance distribution inside interrupter is varied. The calculated results also show that the induced potential of shield causes electric field distortion so that the maximum value of electric field in a vacuum interrupter with arc shield is higher than that without one.

  • PDF

Analytical approximation of optical force on a perfectly reflecting sphere: ray-optics regime

  • Kim, Sang Bok;Song, Dong Keun
    • Particle and aerosol research
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • The optical force on a perfectly reflecting sphere in a ray-optics regime is considered. With the assumption of geometric optics and a sphere smaller than the minimum waist of the illuminating beam, closed-form analytic expressions of the optical force are derived. Both axial and radial forces are expressed by a modified Bessel function of the first kind. The derived analytic expressions are compared to precise numerical computations of the exact optical force equations derived previously. In addition the error due to the small sphere assumption is estimated analytically.

2-axis deck mechanism for gap servo NFR system (근접장 시스템의 2 축 deck mechanism)

  • Jeong, Mi-Hyeon;Park, Hong-Soo;Lee, Seong-Hun;Seo, Jeong-Kyo;Choi, In-Ho;Min, Byung-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1031-1032
    • /
    • 2007
  • Gap servo NF (Near Field) system is one of technologies to reduce beam spot size by increasing NA (Numerical Aperture) of lens. To achieve higher NA, SIL (Solid Immersion Lens) is used. In the case of using a blue LD (405 nm) as the light source the gap distance should be controlled under 100 nm with much tighter margin. Because of very small gap distance between SIL bottom and the surface of media, relative tilt tolerance is limited. In this paper, we presented 2-axis tilt mechanism for skew adjustment within small tilt margin.

  • PDF

Charted Depth Interpolation: Neuron Network Approaches

  • Shi, Chaojian
    • Journal of Navigation and Port Research
    • /
    • v.28 no.7
    • /
    • pp.629-634
    • /
    • 2004
  • Continuous depth data are often required in applications of both onboard systems and maritime simulation. But data available are usually discrete and irregularly distributed. Based on the neuron network technique, methods of interpolation to the charted depth are suggested in this paper. Two algorithms based on Levenberg-Marquardt back-propaganda and radial-basis function networks are investigated respectively. A dynamic neuron network system is developed which satisfies both real time and mass processing applications. Using hyperbolic paraboloid and typical chart area, effectiveness of the algorithms is tested and error analysis presented. Special process in practical applications such as partition of lager areas, normalization and selection of depth contour data are also illustrated.