• Title/Summary/Keyword: Radar Signals

Search Result 390, Processing Time 0.025 seconds

Machine learning based radar imaging algorithm for drone detection and classification (드론 탐지 및 분류를 위한 레이다 영상 기계학습 활용)

  • Moon, Min-Jung;Lee, Woo-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.5
    • /
    • pp.619-627
    • /
    • 2021
  • Recent advance in low cost and light-weight drones has extended their application areas in both military and private sectors. Accordingly surveillance program against unfriendly drones has become an important issue. Drone detection and classification technique has long been emphasized in order to prevent attacks or accidents by commercial drones in urban areas. Most commercial drones have small sizes and low reflection and hence typical sensors that use acoustic, infrared, or radar signals exhibit limited performances. Recently, artificial intelligence algorithm has been actively exploited to enhance radar image identification performance. In this paper, we adopt machined learning algorithm for high resolution radar imaging in drone detection and classification applications. For this purpose, simulation is carried out against commercial drone models and compared with experimental data obtained through high resolution radar field test.

Ground penetrating radar testing in a sand tank for detection of buried pipes (매설파이프 감지를 위한 지하 투과 레이다 모래 모형조 실험)

  • Kim, Hyeong Su
    • Journal of the Korean Geophysical Society
    • /
    • v.1 no.1
    • /
    • pp.59-68
    • /
    • 1998
  • Ground penetrating radar (GPR) experiments were performed in a sand tank to study the ability of detection of buried pipes and to characterize the signal of the reflection wave. The ratios of diameter of buried pipes to the depth were set 4 up to 24 % and materials were metal, synthetic resin, and wood. In case of groundwater table below buried materials, strong reflection signals were observed irrespective of diameter and depth except for wood. While it is very difficult to detect the reflection signals in case that the groundwater table is set to higher than buried materials. The reflection signals from the bottom of the sand tank, however, were clearly observed even in case of higher groundwater table. This implies that the weak reflection signals from the buried materials are not all due to the wave attenuation. The vertical reflection profiling method is recommended in case that the object of the survey is to find horizontal position of buried material because this method has the advantage in cost and time of survey. However, the full or partial CMP gather method is recommended in case that the objects of the survey are to get the detailed subsurface information, i.e. the depth to buried material, interval velocity of geological layer, and mapping the groundwater table.

  • PDF

Characterizing Multichannel Conduit Signal Properties Using a Ground Penetrating Radar: An FDTD Analysis Approach (FDTD 수치해석을 이용한 다중 관로에 대한 GPR 탐지 신호 특성 분석)

  • Ryu, Hee-Hwan;Bae, Joo-Yeol;Song, Ki-Il;Lee, Sang-Yun
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.75-91
    • /
    • 2023
  • In this study, we explore the use of ground penetrating radar (GPR) for the nondestructive survey of subsurface conduits, focusing on the challenges posed by multichannel environments. A key concern is the shadow regions created by conduits, which significantly impact survey results. The shadow regions, which are influenced by conduit position and diameter, hinder signal propagation, thereby making detection within these regions challenging. Using finite-difference time-domain numerical analysis, we examined the characteristics of conduit signals, which typically manifest in hyperbolic patterns. Particularly, we investigated three conduit arrangements: horizontal, vertical, and diagonal. Automatic gain control was applied to amplify the signals, enabling the analysis of variations in shadow regions and signal characteristics for each arrangement. In the horizontal arrangement, the proximity of the two conduits resulted in the emergence of a new hyperbolic pattern between the existing conduits. In the vertical arrangement, the lower conduit could be detected using hyperbolic signals on either side, but the detection was challenging when the upper conduit diameter exceeded that of the lower conduit. In the diagonal arrangement, signal characteristics varied based on the position of shadow regions relative to the detection range of the equipment. Asymmetrical signal patterns were observed when the shadow regions fell within the detection range, whereas the signals of the two conduits were minimally impacted when the shadow regions were outside the detection range. This study provides vital insights into accurately detecting and characterizing subsurface multichannel conduits using GPR-a significant contribution to the field of subsurface exploration and management.

A SCATTERING MECHANISM IN OYSTER FARM BY POLARIMETRIC AND JERS-l DATA

  • Lee Seung-Kuk;Won Joong Sun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.538-541
    • /
    • 2005
  • Tidal flats develop along the south coast ofthe Korean peninsula. These areas are famous for sea farming. Specially, strong and coherent radar backscattering signals are observed over oyster sea farms that consist of artificial structures. Tide height in oyster farm is possible to measure by using interferometric phase and intensity of SAR data. It is assumed that the radar signals from oyster farm could be considered as double-bouncing returns by vertical and horizontal bars. But, detailed backscattering mechanism and polarimetric characteristics in oyster farm had not been well studied. We could not demonstrate whether the assumption is correct or not and exactly understand what the properties of back scattering were in oyster farm without full polarimetric data. The results of AIRSAR L-band POLSAR data, experiments in laboratory and JERS-l images are discussed. We carried out an experiment simulating a target structure using vector network analyser (Y.N.A.) in an anechoic chamber at Niigata University. Radar returns from vertical poles are stronger than those from horizontal poles by 10.5 dB. Single bounce components were as strong as double bounce components and more sensitive to antenna look direction. Double bounce components show quasi-linear relation with height of vertical poles. As black absorber replaced AI-plate in bottom surface, double bounce in vertical pole decreased. It is observed that not all oyster farms are characterized by double bounced scattering in AIRSAR data. The image intensity of the double bounce dominant oyster farm was investigated with respect to that of oyster farm dominated by single bounce in JERS-l SAR data. The image intensity model results in a correlation coefficient (R2 ) of 0.78 in double bounce dominant area while that of 0.54 in single bouncing dominant area. This shows that double bounce dominant area should be selected for water height measurement using In8AR technique.

  • PDF

Simulation of Dynamic EADs Jamming Performance against Tracking Radar in Presence of Airborne Platform

  • Rim, Jae-Won;Jung, Ki-Hwan;Koh, Il-Suek;Baek, Chung;Lee, Seungsoo;Choi, Seung-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.475-483
    • /
    • 2015
  • We propose a numerical scheme to simulate the time-domain echo signals at tracking radar for a realistic scenario where an EAD (expendable active decoy) and an airborne target are both in dynamic states. On various scenarios where the target takes different maneuvers, the trajectories of the EAD ejected from the target are accurately calculated by solving 6-DOF (Degree-of-Freedom) equations of the motion for the EAD. At each sampling time of the echo signal, the locations of the EAD and the target are assumed to be fixed. Thus, the echo power from the EAD can be simply calculated by using the Friis transmission formula. The returned power from the target can be computed based on the pre-calculated scattering matrix of the target. In this paper, an IPO (iterative physical optics) method is used to construct the scattering matrix database of the target. The sinc function-interpolation formulation (sampling theorem) is applied to compute the scattering at any incidence angle from the database. A simulator is developed based on the proposed scheme to estimate the echo signals, which can consider the movement of the airborne target and EAD, also the scattering of the target and the RF specifications of the EAD. For applications, we consider the detection probability of the target in the presence of the EAD based on Monte Carlo simulation.

A Weak Signal Detection Algorithm in Clutter Environment for Indoor Location Estimation based on IR-UWB Radar (IR-UWB 레이더 기반의 실내 위치 추정을 위한 클러터 환경에서 미약신호 검출 알고리즘)

  • Younguk Yun;Jung-woo Sohn;Youngok Kim
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.1
    • /
    • pp.10-17
    • /
    • 2023
  • Purpose: In this paper, a distance estimation technique for indoor location estimation using IR-UWB is proposed and researched. We propose an algorithm that can increase the SNR lowered due to clutter or noise in an indoor environment. Method: In order to clutter suppression and detect weak signals, we analyze the existing studies of background remover, correlation, and singular vector decomposition techniques and propose an algorithm. Result: The proposed algorithm, the average error was 0.57m up to 11.5m, and the error were 0.49m from 6m to 11.5m. the average error rate was reduced by about 1m compared to the previous study. Conclusion: It can be used as a technique for detecting weak signals in clutter and noise environments for distance or location estimation, and can also be used as a human life detection technique to reduce damage to people in a disaster situation by using UWB radar which has highly transparent.

Application of Borehole Radar to Tunnel Detection (시추공 레이다 탐사에 의한 지하 터널 탐지 적용성 연구)

  • Cho, Seong-Jun;Kim, Jung-Ho;Kim, Chang-Ryol;Son, Jeong-Sul;Sung, Nak-Hun
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.4
    • /
    • pp.279-290
    • /
    • 2006
  • The borehole radar methods used to tunnel detection are mainly classified into borehole radar reflection, directional antenna, crosshole scanning, and radar tomography methods. In this study, we have investigated the feasibility and limitation of each method to tunnel detection through case studies. In the borehole radar reflection data, there were much more clear diffraction signals of the upper wings than lower wings of the hyperbolas reflected from the tunnel, and their upper and lower wings were spreaded out to more than 10m higher and lower traces from the peaks of the hyperbolas. As the ratio of borehole diameter to antenna length increases, the ringing gets stronger on the data due to the increase in the impedance mismatching between antennas and water in the boreholes. It is also found that the reflection signals from the tunnel could be enhanced using the optimal offset distance between transmitter and receiver antennas. Nevertheless, the borehole radar reflection data could not provide directional information of the reflectors in the subsurface. Direction finding antenna system had a advantage to take a three dimensional location of a tunnel with only one borehole survey even though the cost is still very high and it required very high expertise. The data from crosshole scanning could be a good indicator for tunnel detection and it could give more reliable result when the borehole radar reflection survey is carried out together. The images of the subsurface also can be reconstructed using travel time tomography which could provide the physical property of the medium and would be effective for imaging the underground structure such as tunnels. Based on the results described above, we suggest a cost-effective field procedure for detection of a tunnel using borehole radar techniques; borehole radar reflection survey using dipole antenna can firstly be applied to pick up anomalous regions within the borehole, and crosshole scanning or reflection survey using directional antenna can then be applied only to the anomalous regions to detect the tunnel.

Increment Method of Radar Range using Noise Reduction (잡음 감소 기법을 활용한 레이다의 최대 거리 향상 기법)

  • Lee, Dong-Hyo;Chung, Daewon;Shin, Hanseop;Yang, Hyung-Mo;Kim, Sangdong;Kim, Bong-seok;Jin, Youngseok
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.6
    • /
    • pp.1-10
    • /
    • 2019
  • This paper proposes a method to improve the detectable distance by reducing noise to perform a signal processing technique on the received signals. To increase the radar detection range, the noise component of the received signal has to be reduced. The proposed method reduces the noise component by employing two methods. First, the radar signals received with multiple pulses are accumulated. As the number of additions increases, the noise component gradually decreases due to noise randomness. On the other hand, the signal term gradually increases and thus signal to noise ratio increases. Secondly, after converting the accumulated signal into the frequency spectrum, a Least Mean Square (LMS) filter is applied. In the case of the radar received signal, desired signal exists in a specific part and most of the rest is a noise. Therefore, if the LMS filter is applied in the time domain, the noise increases. To prevent this, the LMS filter is applied after converting the received signal into the entire frequency spectrum. The LMS filter output is then transformed into the time domain and then range estimation algorithm is performed. Simulation results show that the proposed scheme reduces the noise component by about 25 dB. The experiment was conducted by comparing the proposed results with the conventional results of the radars held by the Korea Aerospace Research Institute for the international space station.

Research on Broadband Signal Processing Techniques for the Small Millimeter Wave Tracking Radar (소형 밀리미터파 추적 레이더를 위한 광대역 신호처리 기술 연구)

  • Choi, Jinkyu;Na, Kyoung-Il;Shin, Youngcheol;Hong, Soonil;Park, Changhyun;Kim, Younjin;Kim, Hongrak;Joo, Jihan;Kim, Sosu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.49-55
    • /
    • 2021
  • Recently, a small tracking radar requires the development of a small millimeter wave tracking radar having a high range resolution that can acquire and track a target in various environments and disable the target system with a single blow. Small millimeter wave tracking radar with high range resolution needs to implement a signal processor that can process wide bandwidth signals in real time and meet the requirements of small tracking radar. In this paper, we designed a signal processor that can perform the role and function of a signal processor for a small millimeter wave tracking radar. The signal processor for the small millimeter wave tracking radar requires the real-time processing of input signal of OOOMHz center frequency and OOOMHz bandwidth from 8 channels. In order to satisfy the requirements of the signal processor, the signal processor was designed by applying the high-performance FPGA (Field Programmable Gate Array) and ADC (Analog-to-digital converter) for pre-processing operations, such as DDC (Digital Down Converter) and FFT (Fast Fourier Transform). Finally, the signal processor of the small millimeter wave tracking radar was verified via performance test.

Fabrication of Radar Absorbing Shells Made of Hybrid Composites and Evaluation of Radar Cross Section (하이브리드 복합재를 이용한 레이더 흡수 쉘의 제작 및 레이더 단면적 평가)

  • Jung, Woo-Kyun;Ahn, Sung-Hoon;Ahn, Bierng-Chearl;Park, Seoung-Bae;Won, Myung-Shik
    • Composites Research
    • /
    • v.19 no.1
    • /
    • pp.29-35
    • /
    • 2006
  • The avoidance of enemy's radar detection is very important issue in the modem electronic weapon system. Researchers have studied to minimize reflected signals of radar. In this research, two types of radar absorbing structure (RAS), 'C'-type shell and 'U'-type shell, were fabricated using fiber-reinforced composite materials and their radar cross section (RCS) were evaluated. The absorption layer was composed of glass fiber reinforced epoxy and nano size carbon-black, and the reflection layer was fabricated with carbon fiber reinforced epoxy. During their manufacturing process, undesired thermal deformation (so called spring-back) was observed. In order to reduce spring-back, the bending angle of mold was controlled by a series of experiments. The spring-back of parts fabricated by using compensated mold was predicted by finite element analysis (ANSYS). The RCS of RAS shells were measured by compact range and predicted by physical optics method. The measured RCS data was well matched with the predicted data.