• 제목/요약/키워드: RSFQ

검색결과 50건 처리시간 0.018초

A Single-Flux-Quantum Shift Register based on High-T$_c$ Superconducting Step-edge Josephson Junctions

  • Sung, G.Y.;Choi, C.H.;Suh, J.D.;Han, S.K.;Kang, K.Y.;Hwang, J.S.;Yoon, S.G.;Jung, K.R.;Lee, Y.H.;Kang, J.H.;Kim, Y.H.;Hahn, T.S.
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 1999년도 High Temperature Superconductivity Vol.IX
    • /
    • pp.133-133
    • /
    • 1999
  • We have fabricated and tested a simple circuit of the rapid single-flux-quantum(RSFQ) four-stage shift register using a single layer high-T$_c$ superconducting (HTS) YBa$_2Cu_3O_{7-x}$ (YBCO) thin film structure with 9 step-edge Josephson junctions. The circuit includes two read superconducting quantum interference devices(SQUID) and four stages. To establish a robust HTS RSFQ device fabrication process, we have focussed the reproducible process of sharp and straight step-edge formation as well as the ratio of film thickness to step height t/h. The spread of step-edge junction parameters was measured from each13 junctions with t/h=l/3, l/2, and 2/3 at various temperatures. We have demonstrated the simplified operation of the shift register at 65 K..

  • PDF

A Single-Flux-Quantum Shift Register based on High-$T_c$ Superconducting Step-edge Josephson Junctions

  • Sung G.Y.;Choi, C.H.;Suh J.D.;Han, S. K.;Kang, K.Y.;Hwang, J.S.;Yoon, S.G.;Jung, K.R.;Lee, Y.H.;Kang, J.H.;Kim, Y.H.;Hahn, T.S.
    • Progress in Superconductivity
    • /
    • 제1권1호
    • /
    • pp.31-35
    • /
    • 1999
  • We have fabricated and tested a simple circuit of the rapid single-flux-quantum(RSFQ) four-stage shift register using a single layer high-$T_c$ superconducting (HTS) $YBa_2Cu_3O_{7-x}$ (YBCO) thin film structure with 9 step-edge Josephson junctions. The circuit includes two read superconducting quantum interference devices(SQUID) and four stages. To establish a robust HTS RSFQ device fabrication process, we have focussed on the reproducible process of sharp and straight step-edge formation as well as the ratio of film thickness to step height, t/h. The spread of step-edge junction parameters was measured from each 13 junctions with t/h=1/3, 1/2, and 2/3 at various temperatures. We have demonstrated the simplified operation of the shift register at 65 K.

  • PDF

Development of an RSFQ 4-bit ALU

  • Kim, J.Y.;Baek, S.H.;Kim, S.H.;Jung, K.R.;Lim, H.Y.;Park, J.H.;Kang, J.H.;Han, T.S.
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 2004년도 High Temperature Superconductivity Vol.XIV
    • /
    • pp.55-55
    • /
    • 2004
  • PDF

Pd Shunt저항의 제작 및 동력학특성 조사 (Pd Shunt Resistor for Josephson Junction : Fabrication and Dynamic Simulation)

  • 김규태;남두우;이규원;유광민
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 학술대회 논문집
    • /
    • pp.143-145
    • /
    • 2003
  • External shunt resistor is used in Nb/AlOx/Nb Josephson junction which is basic component of RSFQ circuit. This is to increase damping and to make the so called 'self-reset' optimized for high speed operation. In this study, we fabricated and investigated sheet resistance of Pd and PdAu thin film, and simulated the inductance effect of the shunt resistor to the Josepshon junction dynamics.

  • PDF

단자속 양자 1-bit ALU의 5 ㎓ 측정 (5 ㎓ test of a SFQ 1-bit ALU)

  • 정구락;홍희송;박종혁;임해용;강준희;한택상
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 추계학술대회 논문집
    • /
    • pp.117-119
    • /
    • 2003
  • We have designed fabricated, and tested an RSFQ(Rapid Single Flux Quantum) 1-bit ALU (Arithmetic Logic Unit). The 1-bit ALU was composed of a half adder and three SFQ DC switches. Three DC switches were attached to the two output ports of an ALU for the selection of each function from the available functions that were AND, OR, XOR and ADD. And we also attached two DC switches at the input ports of the half adder so that the input data were controlled using the function generators operating at low speed while we tested the circuit at high speed. The test bandwidth was from 1KHz to 5 ㎓. The chip was tested at the liquid helium temperature of 4.2 K.

  • PDF

XIC tools을 사용한 고온 초전도 Rapid Single Flux Quantum 1-bit A/D Converter의 Simulation과 회로 Layout (Simulations and Circuit Layouts of HTS Rapid Single Flux Quantum 1-bit A/D Converter by using XIC Tools)

  • 남두우;홍희송;정구락;강준희
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2002년도 학술대회 논문집
    • /
    • pp.131-134
    • /
    • 2002
  • In this work, we have developed a systematic way of utilizing the basic design tools for superconductive electronics. This include WRSPICE, XIC, margin program, and L-meter. Since the high performance analog-to- digital converter can be built with Rapid Single Flux Quantum (RSFQ) logic circuits the development of superconductive analog-to-digital converter has attracted a lot of interests as one of the most prospective area of the application of Josephson Junction technology. One of the main advantages in using Rapid Single Flux Quantum logic in the analog-to-digital converter is the low voltage output from the Josephson junction switching, and hence the high resolution. To design an 1-bit analog-digital converter, first we have used XIC tool to compose a circuit schematic, and then studied the operational principle of the circuit with WRSPICE tool. Through this process, we obtained the proper circuit diagram of an 1-bit analog-digital converter circuit. Based on this circuit we performed margin calculations of the designed circuits and optimized circuit parameters. The optimized circuit was laid out as a mask drawing. Inductance values of the circuit layout were calculated with L-meter. Circuit inductors were adjusted according to these calculations and the final layout was obtained.

  • PDF

Design Improvement and Measurement of a Rapid Single Flux Quantum Confluence Buffer

  • Baek, Seung-Hun;Kim, Jin-Young;Kim, Sehoon;Kang, Joonhee;Jungb, Ku-Rak;Park, Jong-Hyeok;Hahnb, Teak-Shang
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제6권4호
    • /
    • pp.41-45
    • /
    • 2004
  • Rapid Single flux quantum (RSFQ) confluence buffer is widely used in complex superconductive digital circuits. In this work, we have improved the currently used confluence buffer and obtained a more soundly designed confluence buffer. In simulations, improvements in the bias margins of 11 % and the global margins of 10%, compared to the previously used confluence buffer, were achieved. Global margins are very important in estimating a process error range allowed in fabrications. We used two circuit simulation tools, WRspice and Julia, to design and optimize the confluence buffer. We used Xic to obtain a mask layout. We fabricated the improved circuits by using Nb technology. The test results at low frequency showed that the improved confluence buffer operated correctly and had a very wide main bias margin of +/-43% enhanced from +/-26% of the previously used confluence buffer.

초전도 Pipelined Multi-Bit ALU에 대한 연구 (Study of the Superconductive Pipelined Multi-Bit ALU)

  • 김진영;고지훈;강준희
    • Progress in Superconductivity
    • /
    • 제7권2호
    • /
    • pp.109-113
    • /
    • 2006
  • The Arithmetic Logic Unit (ALU) is a core element of a computer processor that performs arithmetic and logic operations on the operands in computer instruction words. We have developed and tested an RSFQ multi-bit ALU constructed with half adder unit cells. To reduce the complexity of the ALU, We used half adder unit cells. The unit cells were constructed of one half adder and three de switches. The timing problem in the complex circuits has been a very important issue. We have calculated the delay time of all components in the circuit by using Josephson circuit simulation tools of XIC, $WRspice^{TM}$, and Julia. To make the circuit work faster, we used a forward clocking scheme. This required a careful design of timing between clock and data pulses in ALU. The designed ALU had limited operation functions of OR, AND, XOR, and ADD. It had a pipeline structure. The fabricated 1-bit, 2-bit, and 4-bit ALU circuits were tested at a few kilo-hertz clock frequency as well as a few tens giga-hertz clock frequency, respectively. For high-speed tests, we used an eye-diagram technique. Our 4-bit ALU operated correctly at up to 5 GHz clock frequency.

  • PDF

Fundamental Metrology by Counting Single Flux and Single Charge Quanta with Superconducting Circuits

  • Niemeyer, J.
    • Progress in Superconductivity
    • /
    • 제4권1호
    • /
    • pp.1-9
    • /
    • 2002
  • Transferring single flux quanta across a Josephson junction at an exactly determined rate has made highly precise voltage measurements possible. Making use of self-shunted Nb-based SINIS junctions, programmable fast-switching DC voltage standards with output voltages of up to 10 V were produced. This development is now extended from fundamental DC measurements to the precise determination of AC voltages with arbitrary waveforms. Integrated RSFQ circuits will help to replace expensive semiconductor devices for frequency control and signal coding. Easy-to-handle AC and inexpensive quantum voltmeters of fundamental accuracy would be of interest to industry. In analogy to the development in the flux regime, metallic nanocircuits comprising small-area tunnel junctions and providing the coherent transport of single electrons might play an important role in quantum current metrology. By precise counting of single charges these circuits allow prototypes of quantum standards for electric current and capacitance to be realised. Replacing single electron devices by single Cooper pair circuits, the charge transfer rates and thus the quantum currents could be significantly increased. Recently, the principles of the gate-controlled transfer of individual Cooper pairs in superconducting A1 devices in different electromagnetic environments were demonstrated. The characteristics of these quantum coherent circuits can be improved by replacing the small aluminum tunnel Junctions by niobium junctions. Due to the higher value of the superconducting energy gap ($\Delta_{Nb}$$7\Delta_{Al}$), the characteristic energy and the frequency scales for Nb devices are substantially extended as compared to A1 devices. Although the fabrication of small Nb junctions presents a real challenge, the Nb-based metrological devices will be faster and more accurate in operation. Moreover, the Nb-based Cooper pair electrometer could be coupled to an Nb single Cooper pair qubit which can be beneficial for both, the stability of the qubit and its readout with a large signal-to-noise ratio..

  • PDF